WorldCat Identities

Breuillard, Emmanuel 1977-

Overview
Works: 13 works in 23 publications in 2 languages and 203 library holdings
Genres: Conference papers and proceedings 
Roles: Editor, Contributor, Opponent, Thesis advisor, Author
Publication Timeline
.
Most widely held works by Emmanuel Breuillard
Thin groups and superstrong approximation by Emmanuel Breuillard( Book )

4 editions published in 2014 in English and held by 137 WorldCat member libraries worldwide

"This is a collection of surveys and primarily expository articles focusing on recent developments concerning various quantitative aspects of 'thin groups.' There are discrete subgroups of semisimple Lie groups that are both big (Zariski dense) and small (of infinite covolume). This dual nature leads to many intricate questions. Over the past few years, many new ideas and techniques, arising in particular from arithmetic combinatorics, have been involved in the study of such groups, leading, for instance, to far-reaching generalizations of the strong approximation theorem in which congruence quotients are shown to exhibit a spectral gap, referred to a superstrong aproximation. This book provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics. It arose from the MSRI hot topics workshop of the same name in February 2012."
Rigidité, groupe fondamental et dynamique by Martine Babillot( Book )

5 editions published in 2002 in French and held by 47 WorldCat member libraries worldwide

Simply-laced isomonodromy systems by Ph Boalch( Book )

2 editions published in 2012 in English and held by 4 WorldCat member libraries worldwide

On the hyperbolicity of general hypersurfaces by Damian Brotbek( Book )

2 editions published in 2017 in English and held by 4 WorldCat member libraries worldwide

Géométrie des groupes localement compacts. Arbres. Action ! by Adrien Le Boudec( )

1 edition published in 2015 in English and held by 2 WorldCat member libraries worldwide

Dans le Chapitre 1 nous étudions les groupes localement compacts lacunaires hyperboliques. Nous caractérisons les groupes ayant un cône asymptotique qui est un arbre réel et dont l'action naturelle est focale. Nous étudions également la structure des groupes lacunaires hyperboliques, et montrons que dans le cas unimodulaire les sous-groupes ne satisfont pas de loi. Nous appliquons au Chapitre 2 les résultats précédents pour résoudre le problème de l'existence de points de coupure dans un cône asymptotique dans le cas des groupes de Lie connexes. Dans le Chapitre 3 nous montrons que le groupe de Neretin est compactement présenté et donnons une borne supérieure sur sa fonction de Dehn. Nous étudions également les propriétés métriques du groupe de Neretin, et prouvons que certains sous-groupes remarquables sont quasi-isométriquement plongés. Nous étudions dans le Chapitre 4 une famille de groupes agissant sur un arbre, et dont l'action locale est prescrite par un groupe de permutations. Nous montrons entre autres que ces groupes ont la propriété (PW), et exhibons des groupes simples au sein de cette famille. Dans le Chapitre 5 nous introduisons l'éventail des relations d'un groupe de type fini, qui est l'ensemble des longueurs des relations non engendrées par des relations plus courtes. Nous établissons un lien entre la simple connexité d'un cône asymptotique et l'éventail des relations du groupe, et donnons une grande classe de groupes dont l'éventail des relations est aussi grand que possible
Marches aléatoires, equirépartition et sous-groupes denses dans les groupes de Lie by Emmanuel Breuillard( Book )

2 editions published in 2003 in French and held by 2 WorldCat member libraries worldwide

La thèse comprend deux parties relativement indépendantes. La première, plus probabiliste, traite des marches aléatoires sur les groupes de Lie et en particulier des problèmes d' équirépartition des marches aléatoires après un temps très long. Le chapitre 2 est consacré à l'étude de l'équirépartition des marches symétriques à support fini dans les groupes de Lie nilpotents. Au chapitre 3, on démontre un théorème limite local pour les produits de matrices aléatoires sur le groupe de Heisenberg et on obtient un équivalent probabiliste du théorème d'équirépartition de Ratner pour les marches aléatoires unipotentes dans les espaces homogènes. Le chapitre 4 est indépendant et entièrement consacré au théorème limite local sur R^d et sa vitesse de convergence. La deuxième partie, plus algébrique, traite des sous-groupes denses et libres des groupes de Lie réels et p-adiques. On démontre une version topologique de l'alternative de Tits qui affirme que tout sous-groupe de GL(n, k), pour un corps local k, admet ou bien un sous-groupe résoluble relativement ouvert, ou bien un sous-groupe libre relativement dense. On illustre ensuite ce théorème par diverses applications aux théories des groupes profinis, des actions moyennables et des feuilletages Riemanniens
Joint Spectrum and Large Deviation Principles for Random Products of Matrices by Cagri Sert( )

1 edition published in 2016 in English and held by 1 WorldCat member library worldwide

Après une introduction générale et la présentation d'un exemple explicite dans le chapitre 1, nous exposons certains outils et techniques généraux dans le chapitre 2.- dans le chapitre 3, nous démontrons l'existence d'un principe de grandes déviations (PGD) pour les composantes de Cartan le long des marches aléatoires sur les groupes linéaires semi -simples G. L'hypothèse principale porte sur le support S de la mesure de la probabilité en question et demande que S engendre un semi-groupe Zariski dense. - Dans le chapitre 4, nous introduisons un objet limite (une partie de la chambre de Weyl) que l'on associe à une partie bornée S de G et que nous appelons le spectre joint J(S) de S. Nous étudions ses propriétés et démontrons que J(S) est une partie convexe compacte d'intérieur non-vide dès que S engendre un semi -groupe Zariski dense. Nous relions le spectre joint avec la notion classique du rayon spectral joint et la fonction de taux du PGD pour les marches aléatoires. - Dans le chapitre 5, nous introduisons une fonction de comptage exponentiel pour un S fini dans G, nous étudions ses propriétés que nous relions avec J(S) et démontrons un théorème de croissance exponentielle dense. - Dans le chapitre 6, nous démontrons le PGD pour les composantes d'Iwasawa le long des marches aléatoires sur G. L'hypothèse principale demande l'absolue continuité de la mesure de probabilité par rapport à la mesure de Haar.- Dans le chapitre 7, nous développons des outils pour aborder une question de Breuillard sur la rigidité du rayon spectral d'une marche aléatoire sur le groupe libre. Nous y démontrons un résultat de rigidité géométrique
Application des marches aleatoires a l'etude des sous-groupes des groupes lineaires by Richard Aoun( )

1 edition published in 2011 in English and held by 1 WorldCat member library worldwide

Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afin d'étudier des propriétés génériques des éléments et des sous-groupes des groupes linéaires. Notre premier résultat donne une version probabiliste de l'alternative de Tits : nous montrons que si M_n et M'_n sont deux marches aléatoires indépendantes sur un groupe linéaire de type fini non virtuellement résoluble alors presque sûrement les deux marches finiront par engendrer un sous-groupe libre non abélien à deux générateurs. Cela répond par l'affirmative à une question de Guivarc'h et de Gilman, Miasnikov et Osin. Plus précisément, nous montrons que la probabilité que M_n et M'_n n'engendrent pas un sous-groupe libre décroit exponentiellement vite vers zéro. Notre outil principal est la théorie des produits de matrices aléatoires. Durant la preuve, nous établissons de nouveaux théorèmes limites dans cette théorie, d'une part en généralisant des résultats connus dans le cadre des produits de matrices à valeurs dans les corps archimédiens à tout corps local, d'autre part en donnant des résultats qui sont nouveaux même sur R. Par exemple, nous montrons que sous des hypothèses naturelles sur la marche aléatoire, les composantes suivant K de M_n dans la décomposition KAK deviennent asymptotiquement indépendantes avec vitesse exponentielle. Dans la deuxième partie de la thèse, nous utilisons ces résultats pour étudier la transience des sous-variétés des groupes algébriques. Un de nos résultats peut être formulé comme suit: soient H un sous-groupe non élémentaire de SL_2(R), une probabilité adaptée sur H ayant un moment exponentiel, alors pour toute sous-variété algébrique propre V de SL_2(R), la probabilité que la marche aléatoire appartienne à V décroit exponentiellement vite vers zéro. Par conséquent, la sous-variété algébrique V est transiente pour la marche aléatoire. Nous généralisons cet énoncé au cas ou la marche aléatoire est adaptée sur un groupe Zariski dense des points réels d'un groupe algébrique défini et déployé sur R. Ces résultats sont à comparer avec des travaux récents de Kowalski et de Rivin
Thin groups and superstrong approximation( Book )

1 edition published in 2014 in English and held by 1 WorldCat member library worldwide

Benjamini-Schramm convergence of locally symmetric spaces by Mikołaj Frączyk( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

The main theme of this work is the study of geometry and topology of locally symmetric spaces Gamma\ X as ther volume Vol(\Gamma\ X) tends to infinity. Our first main result concerns the Benjamini-Schramm convergence for arithmetic hyperbolic 2 or 3-manifolds. A sequence of locally symmetric spaces (Gamma_n\ X) converges Benjamini-Schramm to X if and only if for every radius R>0 the limit Vol((Gamma\ X)_{<R}/Vol (Gamma\ X) as n goes to infinity is 0, where (\Gamma\X)_{<R} stands for the R-thin part of Gamma\ X. We prove that there exists a positive constant C=C_R with the following property: for every torsion free, uniform, congruence arithmetic lattice Gamma in PGL(2,R) or PGL(2,C) Vol ((Gamma\ X)_{<R})<= C Vol (Gamma\X))^0.986. There is only finitely many arithmetic lattices of covolume bounded by a constant so the result above implies the Benjamini-Schramm convergence for any sequence of congruence arithmetic hyperbolic 3-manifolds. We also prove a similar but slightly weaker inequality for non-congruence subgroups. Our results are deduced form a strong form of the limit multiplicity property that holds for arithmetic lattices in PGL(2,R) of PGL(2,C). As an application of our bounds we confirm Gelander's conjecture on the triangulations of arithmetic hyperbolic 3-manifolds: we show that every arithmetic hyperbolic 3-manifold M admits a triangulation with O(Vol(M)) simplices and degrees of vertices bounded uniformly by an absolute constant. Next, we move to the setting of higher rank locally symmetric spaces. Let M_n=Gamma_n\ X be a sequence of pairwise distinct locally symmetric spaces modeled after a higher rank symmetric space X. We show that the dimension of the first homology group with coefficients in F_2 is sublinear in volume. This can be compared with the results of Calegari and Emerton on mod-p homology growth in p-adic analytic towers of 3-manifolds as well as the results of Abert, Gelander and Nikolov on the rank gradient of right-angled lattices in higher rank Lie groups.The main strength of our theorem is that we do not need to assume that the manifolds in question are commensurable. Our third result is independent of the first two. Kesten theorem asserts that if Gamma is group generated by a finite symmetric set S and N is a normal subgroup of Gamma then N is amenable if and only if the spectral radii of the Cayley graphs Cay(Gamma, S) and the Schreier graph Sch(Gamma/N,S) are equal. Building on the work of Abert, Glasner and Virag we extend Kesten's theorem to uniformly recurrent subgroups
Théorie des groupes approximatifs et ses applications by Arindam Biswas( )

1 edition published in 2016 in French and held by 1 WorldCat member library worldwide

In the first part of this thesis, we study the structure of approximate subgroups inside metabelian groups (solvable groups of derived length 2) and show that if A is such a K-approximate subgroup, then it is K^(O(r)) controlled (in the sense of Tao) by a nilpotent group where r denotes the rank of G=Fit(G) and Fit(G) is the fitting subgroup of G.The second part is devoted to the study of growth of sets inside GLn(Fq) , where we show a bound on the diameter (with respect to any set of generators) for all finite simple subgroups of this group. What we have is - if G is a finite simple group of Lie type with rank n, and its base field has bounded size, then the diameter of the Cayley graph C(G; S) would be bounded by exp(O(n(logn)^3)). If the size of the base field Fq is not bounded then our method gives a bound of q^(O(n(log nq)3)) for the diameter.In the third part we are interested in the growth of sets inside commutative Moufang loops which are commutative loops respecting the moufang identities but without (necessarily)being associative. For them we show that if the sizes of the associator sets are bounded then the growth of approximate substructures inside these loops is similar to those in ordinary groups. In this way for the subclass of finitely generated commutative moufang loops we have a classification theorem of its approximate subloops
Sous-groupes boréliens des groupes de Lie by Nicolas de Saxcé( )

1 edition published in 2012 in French and held by 1 WorldCat member library worldwide

Dans cette thèse, on étudie les sous-groupes boréliens des groupes de Lie et leur dimension de Hausdorff. Si G est un groupe de Lie nilpotent connexe, on construit dans G des sous-groupes de dimension de Hausdorff arbitraire, tandis que si G est semisimple compact, on démontre que la dimension de Hausdorff d'un sous-groupe borélien strict de G ne peut pas être arbitrairement proche de celle de G
Sommes, produits et projections des ensembles discrétisés by Weikun He( )

1 edition published in 2017 in English and held by 1 WorldCat member library worldwide

In the discretized setting, the size of a set is measured by its covering number by $delta$-balls (a.k.a. metric entropy), where $delta$ is the scale. In this document, we investigate combinatorial properties of discretized sets under addition, multiplication and orthogonal projection. There are three parts. First, we prove sum-product estimates in matrix algebras, generalizing Bourgain's sum-product theorem in the ring of real numbers and improving higher dimensional sum-product estimates previously obtained by Bourgain-Gamburd. Then, we study orthogonal projections of subsets in the Euclidean space, generalizing Bourgain's discretized projection theorem to higher rank situations. Finally, in a joint work with Nicolas de Saxcé, we prove a product theorem for perfect Lie groups, generalizing previous results of Bourgain-Gamburd and Saxcé
 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.74 (from 0.70 for Thin group ... to 0.99 for Thin group ...)

Alternative Names
Emmanuel Breuillard Frans wiskundige

Emmanuel Breuillard fransk matematikar

Emmanuel Breuillard fransk matematiker

Emmanuel Breuillard französischer Mathematiker

Emmanuel Breuillard French mathematician

Emmanuel Breuillard matemático francés

Emmanuel Breuillard mathématicien français

Languages
English (14)

French (9)