WorldCat Identities

Schmeiser, C. (Christian) 1958-

Overview
Works: 9 works in 31 publications in 3 languages and 322 library holdings
Roles: Editor, Author, 958, Opponent
Publication Timeline
.
Most widely held works by C Schmeiser
Semiconductor equations by Peter A Markowich( Book )

17 editions published between 1989 and 1990 in English and held by 247 WorldCat member libraries worldwide

This book contains the first unified account of the currently used mathematical models for charge transport in semiconductor devices. It is focussed on a presentation of a hierarchy of models ranging from kinetic quantum transport equations to the classical drift diffusion equations. Particular emphasis is given to the derivation of the models, an analysis of the solution structure, and an explanation of the most important devices. The relations between the different models and the physical assumptions needed for their respective validity are clarified. The book addresses applied mathematicians, electrical engineers and solid-state physicists. It is accessible to graduate students in each of the three fields, since mathematical details are replaced by references to the literature to a large extent. It provides a reference text for researchers in the field as well as a text for graduate courses and seminars
Voltage current characteristics of a pn diode from a drift diffusion model with nonlinear diffusion by Ansgar Jüngel( Book )

3 editions published in 1994 in English and German and held by 7 WorldCat member libraries worldwide

Asymptotic Representation of Solutions of the Basic Semiconductor Device Equations by Mathematics Research Center (United States. Army)( Book )

3 editions published in 1984 in English and held by 3 WorldCat member libraries worldwide

In this paper the basic semiconductor device equations modelling a symmetric one-dimensional voltage-controlled diode are formulated as a singularly perturbed two point boundary value problem. The perturbation parameter is the normed Debye-length of the device. The authors derive the zeroth and first order terms of the matched asymptotic expansion of the solutions, which are the sums of uniformly smooth outer terms (reduced solutions) and the exponentially varying inner terms (layer solutions). The main result of the paper is that, if the perturbation parameter is sufficiently small then there exists a solution of the semiconductor device problem which is approximated uniformly by the zeroth order term of the expansion, even for large applied voltages. This result shows the validity of the asymptotic expansions of the solutions of the semiconductor device problem in physically relevant high-injection conditions
Rotating waves for semiconductor inverter rings by C. C Lim( Book )

2 editions published in 1990 in English and held by 2 WorldCat member libraries worldwide

The derivation of analytic device models by asymptotic methods by C Schmeiser( Book )

2 editions published in 1991 in English and held by 2 WorldCat member libraries worldwide

Propagation de fronts structurés en biologie - Modélisation et analyse mathématique by Emeric Bouin( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

Cette thèse est consacrée à l'étude de phénomènes de propagation dans des modèles d'EDP venant de la biologie. On étudie des équations cinétiques inspirées par le déplacement de colonies de bactéries ainsi que des équations de réaction-diffusion importantes en écologie afin de reproduire plusieurs phénomènes de dynamique et d'évolution des populations. La première partie étudie des phénomènes de propagation pour des équations cinétiques. Nous étudions l'existence et la stabilité d'ondes progressives pour des modèles ou la dispersion est donnée par un opérateur hyperbolique et non par une diffusion. Cela fait entrer en jeu un ensemble de vitesses admissibles, et selon cet ensemble, divers résultats sont obtenus. Dans le cas d'un ensemble de vitesses borné, nous construisons des fronts qui se propagent à une vitesse déterminée par une relation de dispersion. Dans le cas d'un ensemble de vitesses non borné, on prouve un phénomène de propagation accélérée dont on précise la loi d'échelle. On adapte ensuite à des équations cinétiques une méthode basée sur les équations de Hamilton-Jacobi pour décrire des phénomènes de propagation. On montre alors comment déterminer un Hamiltonien effectif à partir de l'équation cinétique initiale, et prouvons des théorèmes de convergence.La seconde partie concerne l'étude de modèles de populations structurées en espace et en phénotype. Ces modèles sont importants pour comprendre l'interaction entre invasion et évolution. On y construit d'abord des ondes progressives que l'on étudie qualitativement pour montrer l'impact de la variabilité phénotypique sur la vitesse et la distribution des phénotypes à l'avant du front. On met aussi en place le formalisme Hamilton-Jacobi pour l'étude de la propagation dans ces équations de réaction-diffusion non locales.Deux annexes complètent le travail, l'une étant un travail en cours sur la dispersion cinétique en domaine non-borné, l'autre étant plus numérique et illustre l'introduction
Singulär singulär gestörte Randwertprobleme( Book )

1 edition published in 1984 in German and held by 1 WorldCat member library worldwide

On strongly reverse biased semiconductor diodes : a singular perturbation analysis of reverse biased pn-junctions( Book )

1 edition published in 1989 in English and held by 1 WorldCat member library worldwide

On the length distribution in bundles of polymerizing and depolymerizing actin filaments by Heinrich Freistühler( )

1 edition published in 2010 in English and held by 0 WorldCat member libraries worldwide

 
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.72 (from 0.71 for Semiconduc ... to 0.97 for Singulär ...)

Semiconductor equations
Alternative Names
Christian Schmeiser austerriksk matematikar

Christian Schmeiser Austrian mathematician

Christian Schmeiser matemático austríaco

Christian Schmeiser österreichischer Mathematiker

Christian Schmeiser österrikisk matematiker

Christian Schmeiser østerriksk matematiker

Christian Schmeiser østrigsk matematiker

Christian Schmeiser wiskundige uit Oostenrijk

Schmeiser, C.

Schmeiser, C. 1958-

Schmeiser, Christian 1958-

Languages
English (28)

German (2)

French (1)

Covers