WorldCat Identities

Diestel, Reinhard

Overview
Works: 100 works in 258 publications in 4 languages and 3,129 library holdings
Roles: Author, Other, Editor, Creator
Classifications: QA166, 511.5
Publication Timeline
.
Most widely held works by Reinhard Diestel
Graph theory by Reinhard Diestel( Book )

95 editions published between 1996 and 2014 in 5 languages and held by 1,913 WorldCat member libraries worldwide

Graph Theory can be used at various levels. It contains all the standard basic material to be taught in a first graduate or undergraduate course. For an advanced graduate course, it includes proofs of several fundamental, deeper results, most of which thus appear in a book for the first time. To the professional mathematician, the book offers an overview of graph theory as it stands today: with its typical questions and methods, its classic results, and some of those developments that have made this subject such an exciting area in recent years
Graph decompositions : a study in infinite graph theory by Reinhard Diestel( Book )

12 editions published between 1990 and 2002 in English and Undetermined and held by 283 WorldCat member libraries worldwide

Directions in infinite graph theory and combinatorics by Reinhard Diestel( Book )

10 editions published between 1991 and 1992 in English and held by 68 WorldCat member libraries worldwide

The tree-like connectivity structure of finite graphs and matroids by Fabian Hundertmark( )

2 editions published between 2012 and 2013 in English and held by 16 WorldCat member libraries worldwide

Linkages in Large Graphs and Matroid Union by Jan-Oliver Fröhlich( )

1 edition published in 2014 in English and held by 16 WorldCat member libraries worldwide

Connected Tree-width and Infinite Gammoids by Malte Müller( )

1 edition published in 2014 in English and held by 16 WorldCat member libraries worldwide

The excluded minor structure theorem, and linkages in large graphs of bounded tree-width by Theodor Müller( )

1 edition published in 2014 in English and held by 16 WorldCat member libraries worldwide

Limit structures and ubiquity in finite and infinite graphs by Julian Pott( )

1 edition published in 2015 in English and held by 16 WorldCat member libraries worldwide

Representability of infinite matroids and the structure of linkages in digraphs by Seyed Hadi Afzali Borujeni( )

1 edition published in 2014 in English and held by 16 WorldCat member libraries worldwide

On the exclusion of forest minors : a short proof of the path-width theorem by Reinhard Diestel( Book )

3 editions published in 1994 in English and German and held by 9 WorldCat member libraries worldwide

Wegesysteme by Frank Göring( )

2 editions published in 2002 in German and held by 8 WorldCat member libraries worldwide

Wegesysteme werden als Graphen abstrahiert, sodaß als natürliche Enthaltenseinsrelation von Graphen die topologische Minorenrelation betrachtet wird. Durch das Fixieren bestimmter Knotenpunkte des topologischen Minors im großen Graphen wird diese Ordnungsrelation spezialisiert, sodaß Existenzsätze über Wegesysteme eine einfache Formulierung bekommen. Zu Mengers Theorem über die Existenz eines bestimmten Wegesystems werden drei kurze und neue Beweise gegeben. Einer dieser Beweise liefert sowohl eine neue Version des Theorems, die die Vorschreibbarkeit der Start- und Endknoten eines nicht maximalen Wegesystems für ein maximales Wegesystem beinhaltet, als auch einen leicht implementierbaren linearen Algorithmus zum Auffinden dieses Wegesystems. Es wird gezeigt, daß diese Version bekannte Theoreme der Transversaltheorie wie Halls Heiratssatz und das Theorem über gemeinsame Transversalen von Ford und Fulkerson als Spezialfälle hat. Auch für Maders Theorem über die Zahl unabhängiger H-Wege wird die Vorschreibbarkeit der Startknoten gezeigt. Die neue Version von Mengers Theorem wird darüber hinaus verwendet, um ein Verfahren zu begründen, mit welchem untersucht werden kann, ob aus gewissen Zusammenhangsvoraussetzungen (evtl. kombiniert mit einem gegebenen Wegesystem) in einem Graphen die Existenz eines gesuchten Wegesystems folgt. Das Verfahren ist konstruktiv. Entweder findet es ein Gegenbeispiel, also einen Graphen mit den gegebenen Voraussetzungen, der das gesuchte Wegesystem nicht enthält, oder es liefert einen Algorithmus, welcher linear in der Zahl der Knoten und Kanten des gegebenen Graphen das gesuchte Wegesystem findet. Genauer wird bei Eingabe eines beliebigen Graphen entweder einen Trenner gefunden, der beweist, daß die Zusammenhangsvoraussetzung nicht gegeben ist, oder das gesuchte Wegesystem selbst wird konstruiert. An Beispielen wird die Funktionsweise des Verfahren demonstriert: Es werden zwei Existenzsätze über Kreise durch vorgeschriebene Knoten eines gegebenen Graphen damit hergeleitet
The fundamental group of locally finite graphs with ends( )

1 edition published in 2008 in English and held by 8 WorldCat member libraries worldwide

Menger's theorem for a countable source set by Ron Aharoni( Book )

3 editions published in 1993 in English and German and held by 8 WorldCat member libraries worldwide

Embedding graphs in surfaces: MacLanes's theorem for higher genus( )

1 edition published in 2008 in English and held by 8 WorldCat member libraries worldwide

The countable Erdös-Menger conjecture with ends by Reinhard Diestel( Book )

3 editions published in 2002 in English and held by 7 WorldCat member libraries worldwide

Normal trees orders for infinite graphs by Jean-Michel Brochet( Book )

3 editions published in 1993 in English and held by 7 WorldCat member libraries worldwide

A proof of the bounded graph conjecture by Reinhard Diestel( Book )

2 editions published in 1991 in German and English and held by 6 WorldCat member libraries worldwide

On spanning trees and k-connectedness in infinite graphs by Reinhard Diestel( Book )

2 editions published in 1990 in German and English and held by 6 WorldCat member libraries worldwide

Dominating functions and topological graph minors by Reinhard Diestel( Book )

3 editions published in 1991 in German and English and held by 6 WorldCat member libraries worldwide

Decomposing infinite graphs by Reinhard Diestel( Book )

3 editions published in 1990 in English and German and held by 6 WorldCat member libraries worldwide

 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.57 (from 0.52 for Graph theo ... to 0.96 for The counta ...)

Graph theory
Alternative Names
Diestel, R.

Diestel, R. 1959-

Diestel, R. (Reinhard)

Dīsuteru, R. 1959-

R.ディーステル.

Reinhard Diestel deutscher Mathematiker

Reinhard Diestel Duits wiskundige

Reinhard Diestel German mathematician

Reinhard Diestel tysk matematikar

Reinhard Diestel tysk matematiker

ディーステル, R

Languages
English (116)

German (30)

Spanish (1)

Chinese (1)

Covers
Graph decompositions : a study in infinite graph theory