Zvonkin, A. K. (Aleksandr Kalmanovich) 1948
Overview
Works:  16 works in 37 publications in 4 languages and 521 library holdings 

Roles:  Author 
Classifications:  QA166, 511.5 
Publication Timeline
.
Most widely held works by
A. K Zvonkin
Graphs on surfaces and their applications by
S. K Lando(
Book
)
14 editions published between 2003 and 2010 in English and held by 333 WorldCat member libraries worldwide
"Graphs drawn on twodimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers."Jacket
14 editions published between 2003 and 2010 in English and held by 333 WorldCat member libraries worldwide
"Graphs drawn on twodimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers."Jacket
Math from three to seven : the story of a mathematical circle for preschoolers by
A. K Zvonkin(
Book
)
5 editions published in 2011 in English and held by 112 WorldCat member libraries worldwide
This book is a captivating account of a professional mathematician's experiences conducting a math circle for preschoolers in his apartment in Moscow in the 1980s. As anyone who has taught or raised young children knows, mathematical education for little kids is a real mystery. What are they capable of? What should they learn first? How hard should they work? Should they even "work" at all? Should we push them, or just let them be? There are no correct answers to these questions, and the author deals with them in classic mathcircle style: he doesn't ask and then answer a question, but shows us a problembe it mathematical or pedagogicaland describes to us what happened. His book is a narrative about what he did, what he tried, what worked, what failed, but most important, what the kids experienced
5 editions published in 2011 in English and held by 112 WorldCat member libraries worldwide
This book is a captivating account of a professional mathematician's experiences conducting a math circle for preschoolers in his apartment in Moscow in the 1980s. As anyone who has taught or raised young children knows, mathematical education for little kids is a real mystery. What are they capable of? What should they learn first? How hard should they work? Should they even "work" at all? Should we push them, or just let them be? There are no correct answers to these questions, and the author deals with them in classic mathcircle style: he doesn't ask and then answer a question, but shows us a problembe it mathematical or pedagogicaland describes to us what happened. His book is a narrative about what he did, what he tried, what worked, what failed, but most important, what the kids experienced
Lowdimensional topology(
Book
)
2 editions published in 2002 in English and held by 4 WorldCat member libraries worldwide
2 editions published in 2002 in English and held by 4 WorldCat member libraries worldwide
Lowdimensional topology(
Book
)
2 editions published in 2004 in English and held by 4 WorldCat member libraries worldwide
2 editions published in 2004 in English and held by 4 WorldCat member libraries worldwide
Lowdimensional topology(
Book
)
2 editions published in 2002 in English and held by 3 WorldCat member libraries worldwide
2 editions published in 2002 in English and held by 3 WorldCat member libraries worldwide
Lowdimensional topology. Surfaces in 4space(
Book
)
1 edition published in 2004 in English and held by 2 WorldCat member libraries worldwide
1 edition published in 2004 in English and held by 2 WorldCat member libraries worldwide
Lowdimensional topology(
Book
)
2 editions published in 2004 in English and held by 2 WorldCat member libraries worldwide
2 editions published in 2004 in English and held by 2 WorldCat member libraries worldwide
Embedded graphs by
S. K Lando(
Book
)
1 edition published in 2001 in English and held by 2 WorldCat member libraries worldwide
1 edition published in 2001 in English and held by 2 WorldCat member libraries worldwide
Composition des fonctions rationnelles et ses aspects combinatoires by Mohamed el Marraki(
Book
)
1 edition published in 2001 in French and held by 1 WorldCat member library worldwide
NOUS AVONS ETUDIE DANS CETTE THESE LES CONSTELLATIONS SOUS DIFFERENTS ASPECTS : L'ASPECT COMBINATOIRE, L'ASPECT ALGEBRIQUE (DESSINS D'ENFANTS), ASPECT ANALYTIQUE (LIEN AVEC LES FONCTIONS MEROMORPHES). ON S'EST INTERESSE TOUT PARTICULIEREMENT A LA COMPOSITION ET A LA DECOMPOSITION DES CONSTELLATIONS. DANS UN PREMIER TEMPS ON A DECRIT LES ENJEUX DE LA COMPOSITION ET DE LA DECOMPOSITION DANS LE CADRE GENERAL, PUIS DANS UN DEUXIEME TEMPS ON S'EST INTERESSE AUX CAS DES ARBRES, HYPERCARTES ET CACTUS. ET POUR TERMINER ON A ETUDIE QUELQUES APPLICATIONS : LA CONSTRUCTION DES FONCTIONS DE BELYI SUR DES SURFACES DE GENRE SUPERIEUR, LA CLASSIFICATION DES POLYNOMES COMPLEXES ET UN BREF APERCU SUR LES FONCTIONS DE BELYI DYNAMIQUES
1 edition published in 2001 in French and held by 1 WorldCat member library worldwide
NOUS AVONS ETUDIE DANS CETTE THESE LES CONSTELLATIONS SOUS DIFFERENTS ASPECTS : L'ASPECT COMBINATOIRE, L'ASPECT ALGEBRIQUE (DESSINS D'ENFANTS), ASPECT ANALYTIQUE (LIEN AVEC LES FONCTIONS MEROMORPHES). ON S'EST INTERESSE TOUT PARTICULIEREMENT A LA COMPOSITION ET A LA DECOMPOSITION DES CONSTELLATIONS. DANS UN PREMIER TEMPS ON A DECRIT LES ENJEUX DE LA COMPOSITION ET DE LA DECOMPOSITION DANS LE CADRE GENERAL, PUIS DANS UN DEUXIEME TEMPS ON S'EST INTERESSE AUX CAS DES ARBRES, HYPERCARTES ET CACTUS. ET POUR TERMINER ON A ETUDIE QUELQUES APPLICATIONS : LA CONSTRUCTION DES FONCTIONS DE BELYI SUR DES SURFACES DE GENRE SUPERIEUR, LA CLASSIFICATION DES POLYNOMES COMPLEXES ET UN BREF APERCU SUR LES FONCTIONS DE BELYI DYNAMIQUES
Lowdimensional topology. Surfaces in 4space(
Book
)
in English and held by 1 WorldCat member library worldwide
in English and held by 1 WorldCat member library worldwide
Matemáticas de 3 a 7 años : la historia de un círculo matemático para niños by
A. K Zvonkin(
Book
)
1 edition published in 2015 in Spanish and held by 1 WorldCat member library worldwide
1 edition published in 2015 in Spanish and held by 1 WorldCat member library worldwide
Embedded graphs(
)
1 edition published in 2001 in English and held by 1 WorldCat member library worldwide
1 edition published in 2001 in English and held by 1 WorldCat member library worldwide
Minimal degree of the difference of two polynomials over Q, and weighted plane trees by Fedor Pakovich(
)
1 edition published in 2013 in English and held by 1 WorldCat member library worldwide
A weighted bicolored plane tree (or just tree for short) is a bicolored plane tree whose edges are endowed with a positive integral weights. The degree of a vertex is defined as the sum of the weights of the edges incident to this vertex. In ordinary plane trees the weights of all edges are equal to 1. A weighted plane tree is a graphical representation of a pair of coprime polynomials P;Q 2 C[x] of the same degree (defined uniquely up to an affine transformations of the source and target variables) such that: (a) the multiplicities of the roots of P (respectively, of Q) are equal to the degrees of the black (respectively, white) vertices of the corresponding tree; (b) the degree of the difference R = P .. Q attains the minimum, possible for the given multiplicities of the roots of P and Q. In fact, the degree of P and Q is equal to the total weight of the tree in question while the degree of R is equal to its \overweight", meaning its total weight minus the number of edges. If, furthermore, such a tree is uniquely determined by the set of its blackandwhite vertex degrees (we call such trees unitrees), then the corresponding polynomials are defined over Q. he search for the triples (P; Q;R) such that deg R = min, besides being an interesting problem in its own sake, is also related to some important questions in number theory. Dozens of numbertheoretic papers, from 1965 [4] to 2010 [3], were dedicated to the study of these polynomials. Since the main interest of numbertheorists lies in Diophantine equations, the most interesting triples (P; Q;R) are those defined over Q. In this paper we give a complete classification of the unitrees
1 edition published in 2013 in English and held by 1 WorldCat member library worldwide
A weighted bicolored plane tree (or just tree for short) is a bicolored plane tree whose edges are endowed with a positive integral weights. The degree of a vertex is defined as the sum of the weights of the edges incident to this vertex. In ordinary plane trees the weights of all edges are equal to 1. A weighted plane tree is a graphical representation of a pair of coprime polynomials P;Q 2 C[x] of the same degree (defined uniquely up to an affine transformations of the source and target variables) such that: (a) the multiplicities of the roots of P (respectively, of Q) are equal to the degrees of the black (respectively, white) vertices of the corresponding tree; (b) the degree of the difference R = P .. Q attains the minimum, possible for the given multiplicities of the roots of P and Q. In fact, the degree of P and Q is equal to the total weight of the tree in question while the degree of R is equal to its \overweight", meaning its total weight minus the number of edges. If, furthermore, such a tree is uniquely determined by the set of its blackandwhite vertex degrees (we call such trees unitrees), then the corresponding polynomials are defined over Q. he search for the triples (P; Q;R) such that deg R = min, besides being an interesting problem in its own sake, is also related to some important questions in number theory. Dozens of numbertheoretic papers, from 1965 [4] to 2010 [3], were dedicated to the study of these polynomials. Since the main interest of numbertheorists lies in Diophantine equations, the most interesting triples (P; Q;R) are those defined over Q. In this paper we give a complete classification of the unitrees
Cartes planaires et fonctions de Belyi : aspects algorithmiques et expérimentaux by Nicolas Magot(
Book
)
1 edition published in 1997 in French and held by 1 WorldCat member library worldwide
LE SUJET DE CETTE THESE PORTE SUR L'ETUDE DES ASPECTS ALGORITHMIQUES ET EXPERIMENTAUX DES FONCTIONS DE BELYI DES CARTES ET HYPERCARTES PLANAIRES. LES FONCTIONS DE BELYI SONT ETROITEMENT LIEES A LA THEORIE DES DESSINS D'ENFANTS, INITIEE PAR LE MATHEMATICIEN ALEXANDRE GROTHENDIECK. DANS LE PREMIERS CHAPITRE DE LA THESE, NOUS RAPPELONS DIFFERENTES NOTIONS LIEES AUX CARTES ET HYPERCARTES. LE CHAPITRE SUIVANT NOUS PERMET D'INTRODUIRE LA NOTION DE FONCTIONS DE BELYI DANS LE CAS GENERAL, EN TANT QUE FONCTION MEROMORPHE AYANT TOUTES SES VALEURS CRITIQUES DANS 0, 1, . LE THEOREME PRINCIPAL DE LA THEORIE EST QUE LES FONCTIONS DE BELYI SONT EN BIJECTION AVEC LES HYPERCARTES. DANS LE CAS PLANAIRES, CES FONCTIONS DE BELYI SONT DES FONCTIONS RATIONNELLES. CONSIDERONS F UNE FONCTION DE BELYI D'UNE CARTE PLANAIRE. LES RACINES DE L'EQUATION F(Z) = CORRESPONDENT AUX SOMMETS DE L'HYPERCARTE, LES RACINES DE F(Z) = 0 AUX CENTRES DES FACES ET LES RACINES DE F(Z) = 1 AUX MILIEUX D'ARETES DE L'HYPERCARTE. CES DIFFERENTES SOLUTIONS SONT LES POINTS CRITIQUES DE LA FONCTION. NOUS DEMONTRONS ENSUITE DIFFERENTES PROPRIETES DES FONCTIONS DE BELYI QUI VONT ALORS NOUS PERMETTRE DE CONSTRUIRE UN ALGORITHME DE CALCUL DES FONCTIONS DE BELYI PLUS RAPIDE. NOUS PROUVONS EGALEMENT DIFFERENTES RELATIONS ENTRE LES POINTS CRITIQUES, ET ETUDIONS LA COMPOSITION DE FONCTIONS DE BELYI. DANS LE QUATRIEME CHAPITRE, NOUS ETUDIONS LE PROBLEME INVERSE QUI CONSISTE A RECONNAITRE LA CARTE CORRESPONDANT A UNE FONCTION DE BELYI DONNEE. NOUS DEVELOPPONS ALGORITHME QUI PERMET D'OBTENIR UN DESSIN ECHANTILLONNE DE LA VRAIE FORME DE LA CARTE. DANS UN DEUXIEME TEMPS, NOUS PROPOSONS UN ALGORITHME PERMETTANT DE RECONNAITRE DE MANIERE COMBINATOIRE LA CARTE PLANAIRE CORRESPONDANT A UNE FONCTION DE BELYI. DANS LE CINQUIEME CHAPITRE, NOUS EXPOSONS LES APPLICATIONS DES DIFFERENTS TRAVAUX QUE NOUS AVONS DEVELOPPES. NOUS METTONS EN EVIDENCE LA RELATION ENTRE LES POLYNOMES DE JACOBI ET UNE SERIE INFINIE DE CARTES. NOUS CALCULONS ET DESSINONS LES FONCTIONS DE BELYI DE POLYEDRES D'ARCHIMEDE, ET NOUS REPRESENTONS CERTAINES DE CES CARTES SUR LA SPHERE. NOUS MONTRONS LES POSSIBILITES OFFERTES PAR LES FONCTIONS DE BELYI POUR L'ETUDE DE LA CONJECTURE (ABC), ET NOUS CALCULONS ENFIN LES FONCTIONS DES CARTES D'ASSORTIMENT DE DEGRES <6, 3, 2, 1 ; 6, 3, 2, 1>, DONT LE GROUPE CARTOGRAPHIQUE DE HUIT D'ENTRE ELLES EST LE GROUPE DE MATHIEU M#1#2
1 edition published in 1997 in French and held by 1 WorldCat member library worldwide
LE SUJET DE CETTE THESE PORTE SUR L'ETUDE DES ASPECTS ALGORITHMIQUES ET EXPERIMENTAUX DES FONCTIONS DE BELYI DES CARTES ET HYPERCARTES PLANAIRES. LES FONCTIONS DE BELYI SONT ETROITEMENT LIEES A LA THEORIE DES DESSINS D'ENFANTS, INITIEE PAR LE MATHEMATICIEN ALEXANDRE GROTHENDIECK. DANS LE PREMIERS CHAPITRE DE LA THESE, NOUS RAPPELONS DIFFERENTES NOTIONS LIEES AUX CARTES ET HYPERCARTES. LE CHAPITRE SUIVANT NOUS PERMET D'INTRODUIRE LA NOTION DE FONCTIONS DE BELYI DANS LE CAS GENERAL, EN TANT QUE FONCTION MEROMORPHE AYANT TOUTES SES VALEURS CRITIQUES DANS 0, 1, . LE THEOREME PRINCIPAL DE LA THEORIE EST QUE LES FONCTIONS DE BELYI SONT EN BIJECTION AVEC LES HYPERCARTES. DANS LE CAS PLANAIRES, CES FONCTIONS DE BELYI SONT DES FONCTIONS RATIONNELLES. CONSIDERONS F UNE FONCTION DE BELYI D'UNE CARTE PLANAIRE. LES RACINES DE L'EQUATION F(Z) = CORRESPONDENT AUX SOMMETS DE L'HYPERCARTE, LES RACINES DE F(Z) = 0 AUX CENTRES DES FACES ET LES RACINES DE F(Z) = 1 AUX MILIEUX D'ARETES DE L'HYPERCARTE. CES DIFFERENTES SOLUTIONS SONT LES POINTS CRITIQUES DE LA FONCTION. NOUS DEMONTRONS ENSUITE DIFFERENTES PROPRIETES DES FONCTIONS DE BELYI QUI VONT ALORS NOUS PERMETTRE DE CONSTRUIRE UN ALGORITHME DE CALCUL DES FONCTIONS DE BELYI PLUS RAPIDE. NOUS PROUVONS EGALEMENT DIFFERENTES RELATIONS ENTRE LES POINTS CRITIQUES, ET ETUDIONS LA COMPOSITION DE FONCTIONS DE BELYI. DANS LE QUATRIEME CHAPITRE, NOUS ETUDIONS LE PROBLEME INVERSE QUI CONSISTE A RECONNAITRE LA CARTE CORRESPONDANT A UNE FONCTION DE BELYI DONNEE. NOUS DEVELOPPONS ALGORITHME QUI PERMET D'OBTENIR UN DESSIN ECHANTILLONNE DE LA VRAIE FORME DE LA CARTE. DANS UN DEUXIEME TEMPS, NOUS PROPOSONS UN ALGORITHME PERMETTANT DE RECONNAITRE DE MANIERE COMBINATOIRE LA CARTE PLANAIRE CORRESPONDANT A UNE FONCTION DE BELYI. DANS LE CINQUIEME CHAPITRE, NOUS EXPOSONS LES APPLICATIONS DES DIFFERENTS TRAVAUX QUE NOUS AVONS DEVELOPPES. NOUS METTONS EN EVIDENCE LA RELATION ENTRE LES POLYNOMES DE JACOBI ET UNE SERIE INFINIE DE CARTES. NOUS CALCULONS ET DESSINONS LES FONCTIONS DE BELYI DE POLYEDRES D'ARCHIMEDE, ET NOUS REPRESENTONS CERTAINES DE CES CARTES SUR LA SPHERE. NOUS MONTRONS LES POSSIBILITES OFFERTES PAR LES FONCTIONS DE BELYI POUR L'ETUDE DE LA CONJECTURE (ABC), ET NOUS CALCULONS ENFIN LES FONCTIONS DES CARTES D'ASSORTIMENT DE DEGRES <6, 3, 2, 1 ; 6, 3, 2, 1>, DONT LE GROUPE CARTOGRAPHIQUE DE HUIT D'ENTRE ELLES EST LE GROUPE DE MATHIEU M#1#2
Nestandartnye metody v stohastičeskom analize i matematičeskoj fizike(
Book
)
1 edition published in 1990 in Russian and held by 1 WorldCat member library worldwide
1 edition published in 1990 in Russian and held by 1 WorldCat member library worldwide
Lowdimensional topology. Invariants for homology 3spheres(
Book
)
1 edition published in 2002 in English and held by 1 WorldCat member library worldwide
1 edition published in 2002 in English and held by 1 WorldCat member library worldwide
more
fewer
Audience Level
0 

1  
Kids  General  Special 
Related Identities
Alternative Names
Zvonkin, A. K.
Zvonkin, A. K 1948
Zvonkin, A. K (Aleksandr Kalmanovich) 1948
Zvonkin, Aleksandr K. 1948
Zvonkin, Aleksandr Kalmanovič 1948
Zvonkin, Aleksandr Kalmanovich 1948
Zvonkin, Alexander
Zvonkin, Alexander 1948
Zvonkin Alexander K. 1948....
Zvonkin, Alexander Kalmanovich 1948
Zvonkine, Alexandre 1948
Zvonkine, Alexandre K. 1948
Звонкин, А. К 1948
Звонкин, А. К. (Александр Калманович) 1948
Звонкин, Александр Калманович 1948
즈본킨, 알렉산더 1948
Languages
Covers