WorldCat Identities

Duquesne, Thomas

Overview
Works: 17 works in 43 publications in 2 languages and 363 library holdings
Roles: Author, Thesis advisor, Opponent, 956
Classifications: QA274.73, 511.52
Publication Timeline
.
Most widely held works by Thomas Duquesne
Random trees, Lévy processes, and spatial branching processes by Thomas Duquesne( Book )

11 editions published in 2002 in English and French and held by 193 WorldCat member libraries worldwide

Lévy Matters I Recent Progress in Theory and Applications: Foundations, Trees and Numerical Issues in Finance by Thomas Duquesne( )

4 editions published in 2010 in English and held by 25 WorldCat member libraries worldwide

Levy matters I : recent progress in theory and applications: foundations, trees and numerical issues in finance by Thomas Duquesne( Book )

12 editions published in 2010 in English and held by 23 WorldCat member libraries worldwide

Annotation
Recent progress in theory and applications : foundations, trees, and numerical issues in finance( Book )

3 editions published in 2010 in English and held by 23 WorldCat member libraries worldwide

Arbres aléatoires, processus de Lévy et superprocessus by Thomas Duquesne( Book )

1 edition published in 2001 in English and held by 3 WorldCat member libraries worldwide

Lévy matters : recent progress in theory and applications( Book )

in English and held by 3 WorldCat member libraries worldwide

Modélisation de la production d'hydrocarbures dans un bassin pétrolier by Bertrand Michel( Book )

1 edition published in 2008 in French and held by 2 WorldCat member libraries worldwide

Cette thèse a pour objet la modélisation de la production pétrolière dans un bassin d'hydrocarbures. Le modèle proposé s'appuie sur une description probabiliste des réserves, de l'exploration des hydrocarbures et de la mise en production des gisements découverts. L'utilisation de la loi de Levy-Paréto pour décrire les tailles des gisements s'appuie d'une part sur une description probabiliste de la formation des réserves au cours de l'évolution du temps géologique et d'autre part sur les propriétés d'invariance de la distribution de Poisson Dirichlet pour des processus de coalescence et de fragmentation, dans le cadre du modèle de Bolthausen Sznitman. Deux principaux problèmes statistiques, relevant tous les deux d'une problématique de choix de modèle en estimation de densité, sont identifiés. Le premier concerne l'estimation d'un modèle d'exploration pétrolière et le second est une étude de courbes de production qui repose sur une classification non supervisée et une sélection de variables pertinentes effectués via la sélection d'un modèle de mélange Gaussien. Dans les deux cas, un critère de maximum de vraisemblance pénalisé est défini pour obtenir une inégalité de type oracle. Le modèle global de production pétrolière d'un bassin ainsi obtenu permet d'une part de préciser la forme des profils de production de bassin et d'autre part de proposer des scénarios de prolongement de la production de bassin en cours d'exploitation
Lévy matters. fractional Lévy fields, and scale functions by Serge Cohen( Book )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

"This is the second volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters, which is published at irregular intervals over the years. Each volume examines a number of key topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world. The expository articles in this second volume cover two important topics in the area of Lévy processes. The first article by Serge Cohen reviews the most important findings on fractional Lévy fields to date in a self-contained piece, offering a theoretical introduction as well as possible applications and simulation techniques. The second article, by Alexey Kuznetsov, Andreas E. Kyprianou, and Victor Rivero, presents an up to date account of the theory and application of scale functions for spectrally negative Lévy processes, including an extensive numerical overview."--Publisher's website
Régularité fine de processus stochastiques et analyse 2-microlocale by Paul Balança( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

Les travaux présentés dans cette thèse s'intéressent à la géométrie fractale de processus stochastiques à travers le prisme d'un outil appelé l'analyse 2-microlocale. Ce dernier est issu d'une autre branche des mathématiques, l'analyse fonctionnelle et l'étude des équations aux dérivées partielles, et s'est avéré être pertinent pour décrire la géométrie fine de fonctions déterministes ou de processus aléatoires, généralisant notamment les exposants de Hölder classiques. Nous envisageons ainsi dans ce manuscrit différentes classes de processus, traitant en premier lieu le cas des martingales continues et de l'intégrale stochastique d'Ito. La régularité 2-microlocale de ces derniers fait notamment apparaître un autre concept, la pseudo frontière 2-microlocale, étroitement lié à son aîné. Nous appliquons également ce formalisme d'étude à une classe de processus gaussiens : le mouvement brownien multifractionnaire. Nous caractérisons ainsi sa régularité 2-microlocale et hölderienne, et déterminons dans un deuxième temps la forme générale de la dimension fractale de ses trajectoires. Dans notre étude portant sur les processus de Lévy, nous combinons le formalisme 2-microlocale à l'analyse multifractale, permettant alors de mettre en évidence des comportements géométriques n'étant pas captés par les outils usuels. Nous obtenons également en corollaire le spectre multifractal des processus fractionnaires de Lévy. Enfin, dans une dernière partie, nous nous intéressons à la définition et aux propriétés de certains processus de Markov multiparamètres, pouvant être plus généralement indicés par des ensembles
Recent progress in theory and applications : foundations, trees and numerical issues in finance( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

Un modèle d'Ising Curie-Weiss de criticalité auto-organisée by Matthias Gorny( )

1 edition published in 2015 in French and held by 1 WorldCat member library worldwide

In their famous 1987 article, Per Bak, Chao Tang and Kurt Wiesenfeld showed that certain complex systems, composed of a large number of dynamically interacting elements, are naturally attracted by critical points, without any external intervention. This phenomenon, called self-organized criticality, can be observed empirically or simulated on a computer in various models. However the mathematical analysis of these models turns out to be extremely difficult. Even models whose definition seems simple, such as the models describing the dynamics of a sandpile, are not well understood mathematically. The goal of this thesis is to design a model exhibiting self-organized criticality, which is as simple as possible, and which is amenable to a rigorous mathematical analysis. To this end, we modify the generalized Ising Curie-Weiss model by implementing an automatic control of the inverse temperature. For a class of symmetric distributions whose density satisfies some integrability conditions, we prove that the sum Sn of the random variables behaves as in the typical critical generalized Ising Curie-Weiss model: the fluctuations are of order n^(3/4) and the limiting law is C exp(- lambda*x^4) dx where C and lambda are suitable positive constants. Our study led us to generalize this model in several directions: the multidimensional case, more general interacting functions, extension to self-interactions leading to fluctuations with order n^(5/6). We also study dynamic models whose invariant distribution is the law of our Curie-Weiss model of self-organized criticality
Continuum tree limit for the range of random walks on regular trees by Thomas Duquesne( Book )

1 edition published in 2003 in English and held by 1 WorldCat member library worldwide

Contributions à l'étude des arbres de Lévy et des arbres inhomogènes continus by Minmin Wang( )

1 edition published in 2014 in English and held by 1 WorldCat member library worldwide

Nous considérons deux modèles d'arbres aléatoires continus, à savoir les arbres de Lévy et les arbres inhomogènes. Les arbres de Lévy, introduits par Le Gall et Le Jan (1998) comme extension de l'arbre brownien d'Aldous (1991), décrivent les structures généalogiques des processus de branchement. Nous donnons une description de la loi d'un arbre de Lévy conditionné par son diamètre, ainsi qu'une décomposition de l'arbre le long de ce diamètre, qui est décrite à l'aide d'une mesure ponctuelle de Poisson. Dans le cas particulier d'un mécanisme de branchement stable, nous caractérisons la loi jointe du diamètre et de la hauteur d'un arbre de Lévy conditionné par sa masse totale. Dans le cas brownien nous obtenons une formule explicite de cette loi jointe, ce qui permet de retrouver par un calcul direct sur l'excursion brownienne, un résultat de Szekeres (1983) et Aldous (1991) concernant la loi du diamètre. Dans les cas stables, nous obtenons également des développements asymptotiques pour les lois de la hauteur et du diamètre. Les arbres inhomogènes sont introduits par Aldous et Pitman (2000), Camarri et Pitman (2000). Ce sont des généralisations de l'arbre brownien d'Aldous. Pour un arbre inhomogène, nous étudions une fragmentation de cet arbre qui généralise celle introduite par Aldous et Pitman pour l'arbre brownien. Nous construisons un arbre généalogique de cette fragmentation. En utilisant des arguments de convergence, nous montrons qu'il y a une dualité́ en loi entre l'arbre initial et l'arbre généalogique de fragmentation. Pour l'arbre brownien, nous trouvons aussi une façon de reconstruire l'arbre initial à partir de l'arbre généalogique
Marche aléatoire indexée par un arbre et marche aléatoire sur un arbre by Shen Lin( )

1 edition published in 2014 in English and held by 1 WorldCat member library worldwide

The aim of this Ph. D. thesis is to study several probabilistic models linking the random walks and the random trees arising from critical branching processes.In the first part, we consider the model of random walk taking values in a Euclidean lattice and indexed by a critical Galton-Watson tree conditioned by the total progeny. Under some assumptions on the critical offspring distribution and the centered jump distribution, we obtain, in all dimensions, the asymptotic growth rate of the range of this random walk, when the size of the tree tends to infinity. These results also allow us to describe the asymptotic behavior of the range of a branching random walk, when the size of the initial population goes to infinity. In parallel, we treat likewise some cases where the random walk has a non-zero constant drift.In the second part, we focus on the fractal properties of the harmonic measure on large critical Galton-Watson trees. By harmonic measure, we mean the exit distribution from a ball centered at the root of the tree by simple random walk on this tree. If the critical offspring distribution is in the domain of attraction of a stable distribution, we prove that the mass of the harmonic measure is asymptotically concentrated on a boundary subset of negligible size with respect to that of the boundary. Assuming that the critical offspring distribution has a finite variance, we are able to calculate the mass of the harmonic measure carried by a random vertex uniformly chosen from the boundary
Sur des propriétés fractales et trajectorielles de processus de branchement continus by Jean-Pierre Duhalde( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

This thesis investigates some fractal and pathwise properties of branching processes with continuous time and state-space. Informally, this kind of process can be described by considering the evolution of a population where individuals reproduce and die over time, randomly. The first chapter deals with the class of continuous branching processes with immigration. We provide a semi-explicit formula for the hitting times and a necessary and sufficient condition for the process to be recurrent or transient. Those two results illustrate the competition between branching and immigration. The second chapter deals with the Brownian tree and its local time measures : the level-sets measures. We show that they can be obtained as the restriction, with an explicit multiplicative constant, of a Hausdorff measure on the tree. The result holds uniformly for all levels. The third chapter study the Super-Brownian motion associated with a general branching mechanism. Its total occupation measure is obtained as the restriction to the total range, of a given packing measure on the euclidean space. The result is valid for large dimensions. The condition on the dimension is discussed by computing the packing dimension of the total range. This is done under a weak assumption on the regularity of the branching mechanism
Convergence de cartes et tas de sable by Thomas Selig( )

1 edition published in 2014 in French and held by 1 WorldCat member library worldwide

This Thesis studies various problems located at the boundary between Combinatorics and Probability Theory. It is formed of two independent parts. In the first part, we study the asymptotic properties of some families of \maps" (from a non traditional viewpoint). In thesecond part, we introduce and study a natural stochastic extension of the so-called Sandpile Model, which is a dynamic process on a graph. While these parts are independent, they exploit the same thrust, which is the many interactions between Combinatorics and Discrete Probability, with these two areas being of mutual benefit to each other. Chapter 1 is a general introduction to such interactions, and states the main results of this Thesis. Chapter 2 is an introduction to the convergence of random maps. The main contributions of this Thesis can be found in Chapters 3, 4 (for the convergence of maps) and 5 (for the Stochastic Sandpile model)
Lévy Matters( )

in English and held by 0 WorldCat member libraries worldwide

 
moreShow More Titles
fewerShow Fewer Titles
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.75 (from 0.49 for Recent pro ... to 1.00 for Lévy Matt ...)

Lévy Matters I Recent Progress in Theory and Applications: Foundations, Trees and Numerical Issues in FinanceLevy matters I : recent progress in theory and applications: foundations, trees and numerical issues in financeRecent progress in theory and applications : foundations, trees, and numerical issues in financeLévy matters : recent progress in theory and applicationsRecent progress in theory and applications : foundations, trees and numerical issues in finance
Languages
English (37)

French (6)

Covers
Levy matters I : recent progress in theory and applications: foundations, trees and numerical issues in financeRecent progress in theory and applications : foundations, trees, and numerical issues in financeLévy matters : recent progress in theory and applicationsRecent progress in theory and applications : foundations, trees and numerical issues in finance