WorldCat Identities

Ionel, Eleny

Overview
Works: 10 works in 10 publications in 1 language and 10 library holdings
Roles: Thesis advisor
Publication Timeline
.
Most widely held works by Eleny Ionel
Compactifying picard stacks over degenerations of surfaces by Atoshi Chowdhury( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

Moduli spaces of smooth varieties can be partially compactified by the addition of a boundary parametrizing reducible varieties. We address the question of partially compactifying the universal Picard stack (the moduli space of line bundles) over a moduli space of smooth varieties by extending it over such a partial compactification. We present a stability condition for line bundles on reducible varieties and use it to specify what boundary points should be added to the universal Picard stack to obtain a proper moduli space. Over surfaces with exactly two irreducible components, we give specific results on enumerating stable line bundles, which support the conjecture that these are the right boundary points to add. This generalizes work of Caporaso and others in the 1990s on compactifying the universal Picard variety over the moduli space of curves
Filtered floer and symplectic homology via Gromov-Witten theory by Luís Miguel Pereira De Matos Geraldes Diogo( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology
Characteristic numbers of genus one space curves by Dung Hoang Nguyen( )

1 edition published in 2011 in English and held by 1 WorldCat member library worldwide

The purpose of this thesis is to develop an algorithm to compute all the characteristic numbers of genus one curves in projective spaces of arbitrary dimension. The characteristic numbers of genus zero curves, genus zero curves with an ordinary node, genus zero curves with an ordinary cusp are also computed en route
A homotopy-theoretic view of Bott-Taubes integrals and knot spaces by Robin Michael John Koytcheff( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

We construct cohomology classes in the space of knots by considering a bundle over this space and "integrating along the fiber'' classes coming from the cohomology of configuration spaces using a Pontrjagin-Thom construction. The bundle we consider is essentially the one considered by Bott and Taubes, who integrated differential forms along the fiber to get knot invariants. By doing this "integration'' homotopy-theoretically, we are able to produce integral cohomology classes. Inspired by results of Budney and Cohen, we study how this integration is compatible with homology operations on the space of long knots. In particular we derive a product formula for evaluations of cohomology classes on homology classes, with respect to connect-sum of knots. We then adapt the construction to be compatible with tools coming from the Goodwillie-Weiss embedding calculus, in particular Sinha's cosimplicial model for the space of knots
The topology of spaces of J-holomorphic maps to CP2 by Jeremy Kenneth Miller( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

In [Seg79], Graeme Segal proved that the space of holomorphic maps from a Riemann surface to a complex projective space is homology equivalent to the corresponding continuous mapping space through a range of dimensions increasing with degree. I will address if a similar result holds when other almost complex structures are put on projective space. For any compatible almost complex structure J on CP^2, I prove that the inclusion map from the space of J-holomorphic maps to the space of continuous maps induces a homology surjection through a range of dimensions tending to infinity with degree. The proof involves comparing the scanning map of topological chiral homology ([Sal01], [Lur09], [And10]) with gluing of J-holomorphic curves ([MS94], [Sik03])
A new construction of virtual fundamental cycles in symplectic geometry by John Vincent Pardon( )

1 edition published in 2015 in English and held by 1 WorldCat member library worldwide

We develop techniques for defining and working with virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves which are not necessarily cut out transversally. Such techniques have the potential for applications as foundations for invariants in symplectic topology arising from "counting" pseudo-holomorphic curves. We introduce the notion of an implicit atlas on a moduli space, which is (roughly) a convenient system of local finite-dimensional reductions. We present a general intrinsic strategy for constructing a canonical implicit atlas on any moduli space of pseudo-holomorphic curves. The main technical step in applying this strategy in any particular setting is to prove appropriate gluing theorems. We require only topological gluing theorems, that is, smoothness of the transition maps between gluing charts need not be addressed. Our approach to virtual fundamental cycles is algebraic rather than geometric (in particular, we do not use perturbation). Sheaf-theoretic tools play an important role in setting up our functorial algebraic "VFC package". We illustrate the methods we introduce by giving definitions of Gromov--Witten invariants and Hamiltonian Floer homology over $\QQ$ for general symplectic manifolds. Our framework generalizes to the $S^1$-equivariant setting, and we use $S^1$-localization to calculate Hamiltonian Floer homology. The Arnold conjecture (as treated by Floer, Hofer--Salamon, Ono, Liu--Tian, Ruan, and Fukaya--Ono) is a well-known corollary of this calculation. We give a construction of contact homology in the sense of Eliashberg--Givental--Hofer. Specifically, we use implicit atlases to construct coherent virtual fundamental cycles on the relevant compactified moduli spaces of holomorphic curves
Orientability of moduli spaces and open Gromov-Witten invariants by Penka Vasileva Georgieva( )

1 edition published in 2011 in English and held by 1 WorldCat member library worldwide

We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero
A proof of the Göttsche-Yau-Zaslow formula by Yu-jong Tzeng( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

We prove the number of r-nodal curves in [vertical line]L[vertical line] is a universal polynomial for all algebraic surface S and sufficiently ample line bundle L
Moduli spaces of pseudo-holomorphic disks and floer theory of cleanly intersecting immersed lagrangians by Yin Kwan Chan( )

1 edition published in 2010 in English and held by 1 WorldCat member library worldwide

In this thesis we investigate moduli spaces of pseudo-holomorphic disks with Lagrangian boundary conditions, in which the Lagrangians are immersed with clean self-intersections. We then discuss the compactification of these moduli spaces, and show that under specific assumptions, the moduli spaces can be oriented. Finally, we use these moduli spaces to construct and compute Lagrangian Floer cohomology for sphere and orientation covers of the real projective space embedded as a Lagrangian submanifold of the complex projective space
Loose legendrian embeddings in high dimensional contact manifolds by Maxwell Le Murphy( )

1 edition published in 2012 in English and held by 1 WorldCat member library worldwide

We give an h-principle type result for a class of Legendrian embeddings in contact manifolds of dimension at least $5$. These Legendrians, referred to as loose, have trivial pseudo-holomorphic invariants. We demonstrate they are classified up to ambient contact isotopy by smooth embedding class equipped with an almost complex framing. This result is inherently high dimensional: analogous results in dimension $3$ are false
 
Audience Level
0
Audience Level
1
  Kids General Special  
Audience level: 0.81 (from 0.81 for A proof of ... to 0.81 for A proof of ...)

Languages
English (10)