zum Inhalt wechseln
Advanced data mining and applications : 8th International Conference, ADMA 2012, Nanjing, China, December 15-18, 2012 : proceedings Titelvorschau
SchließenTitelvorschau
Prüfung…

Advanced data mining and applications : 8th International Conference, ADMA 2012, Nanjing, China, December 15-18, 2012 : proceedings

Verfasser/in: Shuigeng Zhou; Songmao Zhang; G Karypis
Verlag: Berlin ; New York : Springer, ©2012.
Serien: Lecture notes in computer science, 7713.; Lecture notes in computer science., Lecture notes in artificial intelligence.; LNCS sublibrary., SL 7,, Artificial intelligence.
Ausgabe/Format   E-Book : Dokument : Tagungsband : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Gattung/Form: Electronic books
Conference proceedings
Congresses
Medientyp: Tagungsband, Dokument, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Shuigeng Zhou; Songmao Zhang; G Karypis
ISBN: 9783642355271 3642355277 3642355269 9783642355264
OCLC-Nummer: 822995935
Beschreibung: 1 online resource (xviii, 795 p.) : ill.
Inhalt: Social Media Mining --
Leave or Stay: The Departure Dynamics of Wikipedia Editors --
Cross-Modal Information Retrieval - A Case Study on Chinese Wikipedia --
Unsupervised Learning Chinese Sentiment Lexicon from Massive Microblog Data --
Community Extraction Based on Topic-Driven-Model for Clustering Users Tweets --
Clustering --
Constrained Spectral Clustering Using Absorbing Markov Chains --
Inducing Taxonomy from Tags: An Agglomerative Hierarchical Clustering Framework --
Personalized Clustering for Social Image Search Results Based on Integration of Multiple Features --
Query Directed Web Page Clustering Using Suffix Tree and Wikipedia Links --
Mining Fuzzy Moving Object Clusters --
Exemplars-Constraints for Semi-supervised Clustering --
Customer Segmentation for Power Enterprise Based on Enhanced-FCM Algorithm --
A MapReduce-Based Parallel Clustering Algorithm for Large Protein-Protein Interaction Networks --
Machine Learning: Algorithms and Applications --
A New Manifold Learning Algorithm Based on Incremental Spectral Decomposition --
Sparse Boosting with Correlation Based Penalty --
Learning from Multiple Naive Annotators --
Query by Committee in a Heterogeneous Environment --
Variational Learning of Dirichlet Process Mixtures of Generalized Dirichlet Distributions and Its Applications --
A New Multi-label Learning Algorithm Using Shelly Neighbors --
Kernel Mean Matching with a Large Margin --
Properly and Automatically Naming Java Methods: A Machine Learning Based Approach --
Classification --
A Bag Reconstruction Method for Multiple Instance Classification and Group Record Linkage --
Semi-naive Bayesian Classification by Weighted Kernel Density Estimation --
Spectral Clustering-Based Semi-supervised Sentiment Classification --
Automatic Filtering of Valuable Features for Text Categorization --
A Feature Selection Method for Improved Document Classification --
An Ensemble Approach to Multi-label Classification of Textual Data --
Hierarchical Text Classification for News Articles Based-on Named Entities --
Document-Level Sentiment Classification Based on Behavior-Knowledge Space Method --
Prediction, Regression and Recognition --
NAP-SC: A Neural Approach for Prediction over Sparse Cubes --
Semi-supervised Gaussian Process Regression and Its Feedback Design --
A Graph-Based Churn Prediction Model for Mobile Telecom Networks --
Facial Action Unit and Emotion Recognition with Head Pose Variations --
Use of Supervised Learning to Predict Directionality of Links in a Network --
Predicting Driving Direction with Weighted Markov Model --
Pattern Mining, Semantic Label Identification and Movement Prediction Using Mobile Phone Data --
Using Partially-Ordered Sequential Rules to Generate More Accurate Sequence Prediction --
Optimization and Approximation --
Particle Swarm Optimization of Information-Content Weighting of Symbolic Aggregate Approximation --
Fast Nyström for Low Rank Matrix Approximation --
An Enhanced Class-Attribute Interdependence Maximization Discretization Algorithm --
Towards Normalizing the Edit Distance Using a Genetic Algorithms-Based Scheme --
Mining Time Series and Streaming Data --
PCG: An Efficient Method for Composite Pattern Matching over Data Streams --
Visual Fingerprinting: A New Visual Mining Approach for Large-Scale Spatio-temporal Evolving Data --
Stock Trend Extraction via Matrix Factorization --
Stock Price Forecasting with Support Vector Machines Based on Web Financial Information Sentiment Analysis --
Web Mining and Semantic Analysis --
Automated Web Data Mining Using Semantic Analysis --
Geospatial Data Mining on the Web: Discovering Locations of Emergency Service Facilities --
Summarizing Semantic Associations Based on Focused Association Graph --
News Sentiment Analysis Based on Cross-Domain Sentiment Word Lists and Content Classifiers --
Data Mining Applications --
Integrating Data Mining and Optimization Techniques on Surgery Scheduling --
Using Data Mining for Static Code Analysis of C --
Fraud Detection in B2B Platforms Using Data Mining Techniques --
Efficiently Identifying Duplicated Chinese Company Names in Large-Scale Registration Database --
Search and Retrieval --
Keyword Graph: Answering Keyword Search over Large Graphs --
Medical Image Retrieval Method Based on Relevance Feedback --
Personalized Diversity Search Based on User's Social Relationships --
Information Recommendation and Hiding --
Towards a Tricksy Group Shilling Attack Model against Recommender Systems --
Topic-Centric Recommender Systems for Bibliographic Datasets --
Combining Spatial Cloaking and Dummy Generation for Location Privacy Preserving --
Outlier Detection --
Modeling Outlier Score Distributions --
A Hybrid Anomaly Detection Framework in Cloud Computing Using One-Class and Two-Class Support Vector Machines --
Topic Modeling --
Residual Belief Propagation for Topic Modeling --
The Author-Topic-Community Model: A Generative Model Relating Authors' Interests and Their Community Structure --
Data Cube Computing --
Constrained Closed Non Derivable Data Cubes --
VS-Cube: Analyzing Variations of Multi-dimensional Patterns over Data Streams.
Serientitel: Lecture notes in computer science, 7713.; Lecture notes in computer science., Lecture notes in artificial intelligence.; LNCS sublibrary., SL 7,, Artificial intelligence.
Andere Titel ADMA 2012
Verfasserangabe: Shuigeng Zhou, Songmao Zhang, George Karypis (eds.).
Weitere Informationen:

Abstract:

This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/822995935>
library:oclcnum"822995935"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/822995935>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2012"
schema:creator
schema:datePublished"2012"
schema:description"This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1207077324>
schema:genre"Conference proceedings"@en
schema:genre"Conference proceedings."@en
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Advanced data mining and applications 8th International Conference, ADMA 2012, Nanjing, China, December 15-18, 2012 : proceedings"@en
schema:name"ADMA 2012"@en
schema:numberOfPages"795"
schema:publisher
schema:url<http://site.ebrary.com/id/10634963>
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-642-35527-1>
schema:workExample
schema:workExample

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.