skip to content
Advances in mechanics ans mathematics. / vol. 2 Preview this item
ClosePreview this item

Advances in mechanics ans mathematics. / vol. 2

Author: David Yang Gao; Ray W Ogden
Publisher: Dordrecht ; Boston ; London : Kluwer academic publ., cop. 2003.
Series: Advances in mechanics and mathematics (Monographic series. Print), 1.
Edition/Format:   book_printbook : EnglishView all editions and formats

Aims to bridge the gap between mechanics and mathematics. This book is suitable for scientists, engineers and mathematicians, including advanced students (doctoral and post-doctoral level) at  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: David Yang Gao; Ray W Ogden
ISBN: 1402076452 9781402076459
OCLC Number: 492588060
Description: xviii-312 p. : fig. ; 24 cm.
Contents: 1 Fracture Mechanics of Functionally Graded Materials.- 1 Introduction.- 2 Mechanics Models.- 2.1 Mechanics Modeling.- 2.2 Elasticity Equations of FGMs.- 2.3 Effective Elastic Properties.- 3 Crack Tip Mechanics.- 3.1 Crack Tip Elastic Fields.- 3.2 K - Dominance.- 4 Stress Intensity Factor Solutions.- 4.1 Integral Transform/Integral Equation Method.- 4.2 Numerical Methods.- 5 Fracture Toughness and Crack Growth Resistance Curve.- 5.1 Fracture toughness Based on a Rule of Mixtures.- 5.2 Crack Growth Resistance Curve Based on a Crack Bridging Mechanism.- 5.3 Residual Strength.- 5.4 Crack Kinking under Mixed Mode Conditions.- 6 Thermofracture Mechanics.- 6.1 Heat Conduction Equations of FGMs.- 6.2 Thermoelasticity Equations of FGMs.- 6.3 A Heat Conduction Problem.- 6.3.1 A multi-layered material model.- 6.3.2 Interface temperatures for short times.- 6.3.3 A closed form solution of temperature field for short times.- 6.4 A Thermal Crack Problem.- 7 Stationary Cracks in Viscoelastic FGMs.- 7.1 Correspondence Principle.- 7.2 Relaxation Functions in Separable Form in Space and Time.- 7.3 Viscoelastic Crack Tip Fields.- 7.4 Stress Intensity Factors for FGMs with Variables Separable Relaxation Functions.- 8 Fracture Dynamics.- 8.1 Basic Equations.- 8.2 Stationary Cracks Subjected to Dynamic Loading.- 8.3 Crack Propagation.- 9 Fracture Simulation Using a Cohesive Zone Model.- 9.1 A Cohesive Zone Model.- 9.2 Plasticity of FGMs and Tamura-Tomota-Ozawa Model.- 9.3 Cohesive Elements.- 9.4 Calibration of Cohesive Fracture Parameters.- 9.5 Fracture Simulation.- 9.6 Effect of Peak Cohesive Traction for Ceramic Phase.- 10 Concluding Remarks.- References.- 2 Topics in Mathematical Analysis of Viscoelastic Flow.- 1 Introduction.- 2 High Weissenberg number asymptotics.- 2.1 The Euler equation.- 2.2 High Weissenberg number boundary layers.- 2.3 Flow near a reentrant corner.- 3 Instabilities in viscoelastic flows.- 3.1 Parallel shear flows.- 3.2 Shear flows with curved streamlines.- 3.3 Two-layer flows.- 3.4 Open mathematical questions.- 4 Breakup of viscoelastic jets.- 4.1 One-dimensional theory.- 4.2 The Newtonian case.- 4.3 Suppression of breakup.- 4.4 The Giesekus model.- 4.5 Elastic breakup.- 4.6 The role of inertia.- References.- 3 Selected Topics in Stochastic Wave Propagation.- 1 Basic Methods in Stochastic Wave Propagation.- 1.1 The long wavelength case.- 1.1.1 Elementary considerations.- 1.1.2 Series expansion.- 1.2 The short wavelength case - ray method.- 1.2.1 Fermat's principle.- 1.2.2 Smooth inhomogeneity vis-a-vis local isotropy.- 1.2.3 Eikonal equation.- 1.2.4 Markov character of rays.- 1.3 The short wavelength case - Rytov method.- 2 Towards Spectral Finite Elements for Random Media.- 2.1 Spectral finite element for waves in rods.- 2.1.1 Deterministic case.- 2.1.2 Random case.- 2.2 Spectral finite element for flexural waves.- 2.2.1 Deterministic case.- 2.2.2 Random case.- 2.3 Observations and related work.- 3 Waves in Random 1-D Composites.- 3.1 Motion in an Imperfectly Periodic Composite.- 3.1.1 Random evolutions.- 3.1.2 Effects of imperfections on Floquet waves.- 3.2 Waves in randomly segmented elastic bars.- 4 Transient Waves in Heterogeneous Nonlinear Media.- 4.1 A class of models of random media.- 4.2 Pulse propagation in a linear elastic microstructure.- 4.3 Pulse propagation in nonlinear microstructures.- 4.3.1 Bilinear elastic microstructures.- 4.3.2 Nonlinear elastic microstructures.- 4.3.3 Hysteretic microstructures.- 5 Acceleration Wavefronts in Nonlinear Media.- 5.1 Microscale heterogeneity versus wavefront thickness.- 5.1.1 Basic considerations.- 5.1.2 Mesoscale response.- 5.2 Wavefront dynamics in random microstructures.- 5.2.1 Model with one white-noise.- 5.2.2 Model with two correlated Gaussian noises.- 6 Closure.- References.- 4 Periodic Soliton Resonances.- 1 Introduction.- 2 N-periodic soliton solutions to the KP equation with positive dispersion.- 3 Periodic soliton resonances I: solutions to the KP equation with positive dispersion.- 3.1 Resonant interactions between two y-periodic solitons.- 3.2 Resonant interaction between line soliton and y-periodic soliton.- 3.3 Resonant interaction between algebraic soliton and y-periodic soliton.- 3.4 Resonant interaction between inclined line soliton and periodic soliton.- 4 Periodic soliton solutions to the DS I equation.- 5 Periodic soliton resonances II: solutions to the DSI equation.- 5.1 Resonant interaction between two y-periodic solitons to the DSI equation.- 5.2 Resonsnt interactions between line soliton and y-periodic soliton to the DSI equation.- 5.3 Resonant interaction of modulational instability with a line soliton.- 6 Soliton stability theory due to periodic soliton resonance solution.- 6.0.1 Linear stability.- 6.0.2 Stabilitiy theory due to periodic soliton resonance solution.- 7 Summary.- References.- 5 Nonconvex Semi-Linear Problems and Canonical Duality Solutions.- 1 Nonconvex Problems and New Phenomena.- 1.1 Semi-linear equations and double-well potential.- 1.2 Parameter effects: meta-chaos and trio-chaos.- 1.3 Global optimization and NP-hard problems.- 2 Canonical Duality Theory: A brief Review.- 2.1 Clarke-Ekeland-Lasey duality.- 2.2 Lagrangian duality.- 2.3 Canonical duality theory.- 3 Canonical Dual Theory and Solutions.- 3.1 Canonical dual transformation and perfect dual problem.- 3.2 Complete set of solutions.- 3.3 Global minimizer and local extrema.- 4 Applications to Unconstrained Global Optimization.- 4.1 Quadratic W(?).- 4.2 Concave W(?).- 5 Application to Constrained Quadratic Programming.- 5.1 Canonical dual formulation.- 5.2 KKT points and global minimizers.- 5.3 Examples.- 6 Quadratic Programming Over a Sphere.- 7 Concluding Remarks.- References.
Series Title: Advances in mechanics and mathematics (Monographic series. Print), 1.
Other Titles: AMMA
Responsibility: ed. by David Y. Gao,...and Ray W. Ogden,...


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:name"Advances in mechanics ans mathematics. vol. 2"

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.