skip to content
The algebraic characterization of geometric 4-manifolds Preview this item
ClosePreview this item
Checking...

The algebraic characterization of geometric 4-manifolds

Author: Jonathan A Hillman
Publisher: Cambridge : Cambridge University Press, 1994.
Series: London Mathematical Society lecture note series, 198.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Hillman, Jonathan A. (Jonathan Arthur), 1947-
Algebraic characterization of geometric 4-manifolds.
Cambridge : Cambridge University Press, 1994
(DLC) 94231096
(OCoLC)29951147
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Jonathan A Hillman
ISBN: 9781107362086 1107362083
OCLC Number: 836871773
Description: 1 online resource (ix, 170 pages).
Series Title: London Mathematical Society lecture note series, 198.
Responsibility: J.A. Hillman.
More information:

Abstract:

This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/836871773> # The algebraic characterization of geometric 4-manifolds
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "836871773" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/31708511#Place/cambridge> ; # Cambridge
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/31708511#Topic/manifolds> ; # Manifolds
    schema:about <http://experiment.worldcat.org/entity/work/data/31708511#Topic/mathematics_topology> ; # MATHEMATICS--Topology
    schema:about <http://dewey.info/class/514/e22/> ;
    schema:about <http://id.worldcat.org/fast/959852> ; # Homotopy theory
    schema:about <http://experiment.worldcat.org/entity/work/data/31708511#Topic/homotopie> ; # Homotopie
    schema:about <http://experiment.worldcat.org/entity/work/data/31708511#Topic/varietes_topologiques_a_4_dimensions> ; # Variétés topologiques à 4 dimensions
    schema:about <http://id.worldcat.org/fast/933389> ; # Four-manifolds (Topology)
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/110142793> ; # Jonathan Arthur Hillman
    schema:datePublished "1994" ;
    schema:description "This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/31708511> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/31708511#Series/london_mathematical_society_lecture_note_series> ; # London Mathematical Society lecture note series ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/29951147> ;
    schema:name "The algebraic characterization of geometric 4-manifolds"@en ;
    schema:productID "836871773" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/836871773#PublicationEvent/cambridge_cambridge_university_press_1994> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/31708511#Agent/cambridge_university_press> ; # Cambridge University Press
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=552498> ;
    schema:url <http://site.ebrary.com/id/10447547> ;
    schema:url <http://catdir.loc.gov/catdir/toc/cam027/94231096.html> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552498> ;
    schema:workExample <http://worldcat.org/isbn/9781107362086> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/836871773> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/31708511#Agent/cambridge_university_press> # Cambridge University Press
    a bgn:Agent ;
    schema:name "Cambridge University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/31708511#Series/london_mathematical_society_lecture_note_series> # London Mathematical Society lecture note series ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/836871773> ; # The algebraic characterization of geometric 4-manifolds
    schema:name "London Mathematical Society lecture note series ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/31708511#Topic/mathematics_topology> # MATHEMATICS--Topology
    a schema:Intangible ;
    schema:name "MATHEMATICS--Topology"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/31708511#Topic/varietes_topologiques_a_4_dimensions> # Variétés topologiques à 4 dimensions
    a schema:Intangible ;
    schema:name "Variétés topologiques à 4 dimensions"@en ;
    .

<http://id.worldcat.org/fast/933389> # Four-manifolds (Topology)
    a schema:Intangible ;
    schema:name "Four-manifolds (Topology)"@en ;
    .

<http://id.worldcat.org/fast/959852> # Homotopy theory
    a schema:Intangible ;
    schema:name "Homotopy theory"@en ;
    .

<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=552498>
    rdfs:comment "from EBSCO Academic Collection" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://viaf.org/viaf/110142793> # Jonathan Arthur Hillman
    a schema:Person ;
    schema:birthDate "1947" ;
    schema:familyName "Hillman" ;
    schema:givenName "Jonathan Arthur" ;
    schema:givenName "Jonathan A." ;
    schema:name "Jonathan Arthur Hillman" ;
    .

<http://worldcat.org/isbn/9781107362086>
    a schema:ProductModel ;
    schema:isbn "1107362083" ;
    schema:isbn "9781107362086" ;
    .

<http://www.worldcat.org/oclc/29951147>
    a schema:CreativeWork ;
    rdfs:label "Algebraic characterization of geometric 4-manifolds." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/836871773> ; # The algebraic characterization of geometric 4-manifolds
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.