コンテンツへ移動
The analysis of linear partial differential operators. / II, Differential operators with constant coefficients 資料のプレビュー
閉じる資料のプレビュー
確認中…

The analysis of linear partial differential operators. / II, Differential operators with constant coefficients

著者: Lars Hörmander
出版: Berlin : Springer, 2005.
シリーズ: Classics in mathematics.
エディション/フォーマット:   電子書籍 : Document : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
Vol. I of Lars Hormander's 4-volume treatise was an exposition of the theory of distributions and Fourier analysis preparing for the study of linear partial differential operators. The present Vol. II is mainly devoted to operators with constant coefficients. An analysis of the existence and regularity of (fundamental) solutions in the first two chapters is followed by a thorough study of the Cauchy problem. One  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

ジャンル/形式: Electronic books
資料の種類: Document, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: Lars Hörmander
ISBN: 3540269649 9783540269649 1280346698 9781280346699
OCLC No.: 63147600
注記: "Reprint of the 1983 Edition."
物理形態: 1 online resource.
シリーズタイトル: Classics in mathematics.
その他のタイトル: Differential operators with constant coefficients
責任者: Lars Hörmander.

概要:

Vol. I of Lars Hormander's 4-volume treatise was an exposition of the theory of distributions and Fourier analysis preparing for the study of linear partial differential operators. The present Vol. II is mainly devoted to operators with constant coefficients. An analysis of the existence and regularity of (fundamental) solutions in the first two chapters is followed by a thorough study of the Cauchy problem. One chapter is devoted to the spectral theory of short range perturbations of operators with constant coefficients, and another presents Fourier-Laplace representations of solutions of homogeneous differential equations with constant coefficients. The last chapter is a study of the closely related subject of convolution operators.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/63147600>
library:oclcnum"63147600"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/63147600>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1054025>
rdf:typeschema:Intangible
schema:name"Differential equations, Partial."@en
schema:name"Partial differential operators"@en
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2005"
schema:description"Vol. I of Lars Hormander's 4-volume treatise was an exposition of the theory of distributions and Fourier analysis preparing for the study of linear partial differential operators. The present Vol. II is mainly devoted to operators with constant coefficients. An analysis of the existence and regularity of (fundamental) solutions in the first two chapters is followed by a thorough study of the Cauchy problem. One chapter is devoted to the spectral theory of short range perturbations of operators with constant coefficients, and another presents Fourier-Laplace representations of solutions of homogeneous differential equations with constant coefficients. The last chapter is a study of the closely related subject of convolution operators."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/196894028>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Differential operators with constant coefficients"@en
schema:name"The analysis of linear partial differential operators. II, Differential operators with constant coefficients"@en
schema:publisher
schema:url
schema:url<http://www.myilibrary.com?id=34669>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=146374>
schema:workExample
schema:workExample

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.