skip to content
Analytic number theory : an introductory course Preview this item
ClosePreview this item
Checking...

Analytic number theory : an introductory course

Author: P T Bateman; Harold G Diamond
Publisher: New Jersey : World Scientific, ©2004.
Edition/Format:   eBook : EnglishView all editions and formats
Database:WorldCat
Summary:
This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Bateman, P.T.
Analytic number theory.
New Jersey : World Scientific, c2004
(OCoLC)57420268
Material Type: Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: P T Bateman; Harold G Diamond
ISBN: 9789812389381 9812389385 9789812560803 9812560807 9812562273 9789812562272
OCLC Number: 61482715
Description: 1 online resource (xiii, 360 p.) : ill.
Contents: Cover --
Contents --
Preface --
Chapter 1 Introduction --
1.1 Three problems --
1.2 Asymmetric distribution of quadratic residues --
1.3 The prime number theorem --
1.4 Density of squarefree integers --
1.5 The Riemann zeta function --
1.6 Notes --
Chapter 2 Calculus of Arithmetic Functions --
2.1 Arithmetic functions and convolution --
2.2 Inverses --
2.3 Convergence --
2.4 Exponential mapping --
2.4.1 The 1 function as an exponential --
2.4.2 Powers and roots --
2.5 Multiplicative functions --
2.6 Notes --
Chapter 3 Summatory Functions --
3.1 Generalities --
3.2 Estimate of Q(x) 6x/2 --
3.3 Riemann-Stieltjes integrals --
3.4 Riemann-Stieltjes integrators --
3.4.1 Convolution of integrators --
3.4.2 Generalization of results on arithmetic functions --
3.5 Stability --
3.6 Dirichlets hyperbola method --
3.7 Notes --
Chapter 4 The Distribution of Prime Numbers --
4.1 General remarks --
4.2 The Chebyshev function --
4.3 Mertens estimates --
4.4 Convergent sums over primes --
4.5 A lower estimate for Eulers function --
4.6 Notes --
Chapter 5 An Elementary Proof of the P.N.T. --
5.1 Selbergs formula --
5.1.1 Features of Selbergs formula --
5.2 Transformation of Selbergs formula --
5.2.1 Calculus for R --
5.3 Deduction of the P.N.T. --
5.4 Propositions 8220;equivalent to the P.N.T. --
5.5 Some consequences of the P.N.T. --
5.6 Notes --
Chapter 6 Dirichlet Series and Mellin Transforms --
6.1 The use of transforms --
6.2 Euler products --
6.3 Convergence --
6.3.1 Abscissa of convergence --
6.3.2 Abscissa of absolute convergence --
6.4 Uniform convergence --
6.5 Analyticity --
6.5.1 Analytic continuation --
6.5.2 Continuation of zeta --
6.5.3 Example of analyticity on = --
6.6 Uniqueness --
6.6.1 Identifying an arithmetic function --
6.7 Operational calculus --
6.8 Landau's oscillation theorem --
6.9 Notes --
Chapter 7 Inversion Formulas --
7.1 The use of inversion formulas --
7.2 The Wiener-Ikehara theorem --
7.2.1 Example. Counting product representations --
7.2.2 An O-estimate --
7.3 A Wiener-Ikehara proof of the P.N.T. --
7.4 A generalization of the Wiener-Ikehara theorem --
7.5 The Perron formula --
7.6 Proof of the Perron formula --
7.7 Contour deformation in the Perron formula --
7.7.1 The Fourier series of the sawtooth function --
7.7.2 Bounded and uniform convergence --
7.8 A "smoothed" Perron formula --
7.9 Example. Estimation of [sigma]T(1₂ * 1₃) --
7.10 Notes --
Chapter 8 The Riemann Zeta Function --
Chapter 9 Primes in Arithmetic Progressions --
Chapter 10 Applications of characters --
Chapter 11 Oscillation theorems --
Chapter 12 Sieves --
Chapter 13 Application of Sieves --
Appendix A. Results from Analysis and Algebra.
Responsibility: Paul T. Bateman, Harold G. Diamond.

Abstract:

This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed.

Reviews

Editorial reviews

Publisher Synopsis

.,." suitable for beginning graduate students, or possibly even advanced undergraduates.?

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/61482715>
library:oclcnum"61482715"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/61482715>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1012068>
rdf:typeschema:Intangible
schema:name"Mathematical analysis"@en
schema:name"Mathematical analysis."@en
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2004"
schema:creator
schema:datePublished"2004"
schema:description"This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed."@en
schema:description"Cover -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Three problems -- 1.2 Asymmetric distribution of quadratic residues -- 1.3 The prime number theorem -- 1.4 Density of squarefree integers -- 1.5 The Riemann zeta function -- 1.6 Notes -- Chapter 2 Calculus of Arithmetic Functions -- 2.1 Arithmetic functions and convolution -- 2.2 Inverses -- 2.3 Convergence -- 2.4 Exponential mapping -- 2.4.1 The 1 function as an exponential -- 2.4.2 Powers and roots -- 2.5 Multiplicative functions -- 2.6 Notes -- Chapter 3 Summatory Functions -- 3.1 Generalities -- 3.2 Estimate of Q(x) 6x/2 -- 3.3 Riemann-Stieltjes integrals -- 3.4 Riemann-Stieltjes integrators -- 3.4.1 Convolution of integrators -- 3.4.2 Generalization of results on arithmetic functions -- 3.5 Stability -- 3.6 Dirichlets hyperbola method -- 3.7 Notes -- Chapter 4 The Distribution of Prime Numbers -- 4.1 General remarks -- 4.2 The Chebyshev function -- 4.3 Mertens estimates -- 4.4 Convergent sums over primes -- 4.5 A lower estimate for Eulers function -- 4.6 Notes -- Chapter 5 An Elementary Proof of the P.N.T. -- 5.1 Selbergs formula -- 5.1.1 Features of Selbergs formula -- 5.2 Transformation of Selbergs formula -- 5.2.1 Calculus for R -- 5.3 Deduction of the P.N.T. -- 5.4 Propositions 8220;equivalent to the P.N.T. -- 5.5 Some consequences of the P.N.T. -- 5.6 Notes -- Chapter 6 Dirichlet Series and Mellin Transforms -- 6.1 The use of transforms -- 6.2 Euler products -- 6.3 Convergence -- 6.3.1 Abscissa of convergence -- 6.3.2 Abscissa of absolute convergence -- 6.4 Uniform convergence -- 6.5 Analyticity -- 6.5.1 Analytic continuation -- 6.5.2 Continuation of zeta -- 6.5.3 Example of analyticity on = -- 6.6 Uniqueness -- 6.6.1 Identifying an arithmetic function -- 6.7 Operational calculus -- 6.8 Landau's oscillation theorem -- 6.9 Notes -- Chapter 7 Inversion Formulas -- 7.1 The use of inversion formulas -- 7.2 The Wiener-Ikehara theorem -- 7.2.1 Example. Counting product representations -- 7.2.2 An O-estimate -- 7.3 A Wiener-Ikehara proof of the P.N.T. -- 7.4 A generalization of the Wiener-Ikehara theorem -- 7.5 The Perron formula -- 7.6 Proof of the Perron formula -- 7.7 Contour deformation in the Perron formula -- 7.7.1 The Fourier series of the sawtooth function -- 7.7.2 Bounded and uniform convergence -- 7.8 A "smoothed" Perron formula -- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃) -- 7.10 Notes -- Chapter 8 The Riemann Zeta Function -- Chapter 9 Primes in Arithmetic Progressions -- Chapter 10 Applications of characters -- Chapter 11 Oscillation theorems -- Chapter 12 Sieves -- Chapter 13 Application of Sieves -- Appendix A. Results from Analysis and Algebra."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/793945735>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Analytic number theory an introductory course"@en
schema:numberOfPages"360"
schema:publisher
schema:url<http://site.ebrary.com/id/10079928>
schema:url
schema:url<http://www.myilibrary.com?id=187225>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=129836>
schema:workExample
schema:workExample
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.