skip to content
Antiplane elastic systems. Preview this item
ClosePreview this item
Checking...

Antiplane elastic systems.

Author: L M Milne-Thomson
Publisher: Berlin, Springer, 1962.
Series: Ergebnisse der angewandten Mathematik, 8.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The term antiplane was introduced by L.N.G. FlLON to describe such problems as tension, push, bending by couples, torsion, and flexure by a transverse load. Looked at physically these problems differ from those of plane elasticity already treated * in that certain shearing stresses no longer vanish. This book is concerned with antiplane elastic systems in equilibrium or in steady motion within the framework of the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Milne-Thomson, L.M. (Louis Melville), 1891-
Antiplane elastic systems.
Berlin, Springer, 1962
(DLC) 62014930
(OCoLC)1903607
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: L M Milne-Thomson
ISBN: 9783642856273 3642856276 9783540028055 3540028056
OCLC Number: 562781046
Reproduction Notes: Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2010. MiAaHDL
Description: 1 online resource (265 pages) illustrations.
Details: Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Contents: I. The Law of Elasticity --
1.1. Continued dyadic products --
1.2. The stress tensor --
1.3. The deformation tensor --
1.4. The equation of motion --
1.5. Internal energy --
1.6. Elastic deformation --
1.7. Hooke's law --
1.8. Anisotropy --
1.9. Elastic symmetry --
Examples I --
II. Stress functions and complex stresses --
2.0. Introductory notions --
2.1. Stress functions and fundamental stress combinations --
2.3. The displacement --
2.4. The strain-energy function --
2.5. The elimination of the displacements --
2.6. The complex stresses --
2.7. Expression of the fundamental stress combinations in terms of the complex stresses --
2.8. Effective stress functions --
2.9. The shear function --
Examples II --
III. Isotropic beams --
3.1. The boundary conditions for a prismatic beam --
3.2. The isotropic beam --
3.3. Classification of certain antiplane problems --
3.4. The equations which give the displacement in pure antiplane stress --
3.5. The boundary condition for the pure antiplane problem for isotropic beams --
3.6. Simple extension --
3.7. Bending by terminal couples --
3.8. Circular cylinder pushed into a hole --
Examples III --
IV. The torsion of isotropic beams --
4.1. The torsion problem --
4.2. Lines of shearing stress --
4.3. The twisting moment --
4.4. Solution by conformal mapping --
4.5. The $$ z\bar z $$method --
4.6. Boundary conditions --
4.7. A uniqueness theorem --
4.8. The principle of virtual stresses --
4.9. Torsion of a compound bar of isotropic materials --
Examples IV --
V. The flexure of isotropic beams --
5.1. The flexure problem --
5.2. The centre of flexure --
5.3. Half-sections --
5.4. Shear stress functions --
5.5. de St. Venant's flexure function --
Examples V --
VI. Antiplane of elastic symmetry --
6.1. Bending by couples --
6.2. Boundary conditions --
6.3. A device for transforming integrals --
6.4. Simplifying assumptions --
6.5. Antiplane of elastic symmetry --
6.6. The striess component zz --
6.7. Orthotropic material --
6.8. Methods of approximation --
Examples VI --
VII. General linear and cylindrical anisotropy --
7.1. Generalized plane deformation --
7.2. Line force applied to an elastic half-plane --
7.3. Induced mappings for the region exterior to an ellipse --
7.4. Bending of a cantilever by a transverse force at the free end --
7.5. Cylindrical anisotropy --
7.6. Equations satisfied by the stress functions --
7.7. Circular tube under pressure --
Examples VII --
References.
Series Title: Ergebnisse der angewandten Mathematik, 8.

Abstract:

The term antiplane was introduced by L.N.G. FlLON to describe such problems as tension, push, bending by couples, torsion, and flexure by a transverse load. Looked at physically these problems differ from those of plane elasticity already treated * in that certain shearing stresses no longer vanish. This book is concerned with antiplane elastic systems in equilibrium or in steady motion within the framework of the linear theory, and is based upon lectures given at the Royal Naval College, Greenwich, to officers of the Royal Corps of Naval Constructors, and on technical reports recently published at the Mathematics Research Center, United States Army. My aim has been to tackle each problem, as far as possible, by direct rather than inverse or guessing methods. Here the complex variable again assumes an important role by simplifying equations and by introducing order into much of the treatment of anisotropic material. The work begins with an introduction to tensors by an intrinsic method which starts from a new and simple definition. This enables elastic properties to be stated with conciseness and physical clarity. This course in no way commits the reader to the exclusive use of tensor calculus, for the structure so built up merges into a more familiar form. Nevertheless it is believed that the tensor methods outlined here will prove useful also in other branches of applied mathematics.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(3)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/562781046> # Antiplane elastic systems.
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "562781046" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/3855453364#Place/berlin> ; # Berlin
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://id.worldcat.org/fast/904211> ; # Elasticity
    schema:about <http://experiment.worldcat.org/entity/work/data/3855453364#Topic/elastizitat> ; # Elastizität
    schema:about <http://dewey.info/class/510/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/3855453364#Topic/tensor> ; # Tensor
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/85174430> ; # Louis Melville Milne-Thomson
    schema:datePublished "1962" ;
    schema:description "The term antiplane was introduced by L.N.G. FlLON to describe such problems as tension, push, bending by couples, torsion, and flexure by a transverse load. Looked at physically these problems differ from those of plane elasticity already treated * in that certain shearing stresses no longer vanish. This book is concerned with antiplane elastic systems in equilibrium or in steady motion within the framework of the linear theory, and is based upon lectures given at the Royal Naval College, Greenwich, to officers of the Royal Corps of Naval Constructors, and on technical reports recently published at the Mathematics Research Center, United States Army. My aim has been to tackle each problem, as far as possible, by direct rather than inverse or guessing methods. Here the complex variable again assumes an important role by simplifying equations and by introducing order into much of the treatment of anisotropic material. The work begins with an introduction to tensors by an intrinsic method which starts from a new and simple definition. This enables elastic properties to be stated with conciseness and physical clarity. This course in no way commits the reader to the exclusive use of tensor calculus, for the structure so built up merges into a more familiar form. Nevertheless it is believed that the tensor methods outlined here will prove useful also in other branches of applied mathematics."@en ;
    schema:description "I. The Law of Elasticity -- 1.1. Continued dyadic products -- 1.2. The stress tensor -- 1.3. The deformation tensor -- 1.4. The equation of motion -- 1.5. Internal energy -- 1.6. Elastic deformation -- 1.7. Hooke's law -- 1.8. Anisotropy -- 1.9. Elastic symmetry -- Examples I -- II. Stress functions and complex stresses -- 2.0. Introductory notions -- 2.1. Stress functions and fundamental stress combinations -- 2.3. The displacement -- 2.4. The strain-energy function -- 2.5. The elimination of the displacements -- 2.6. The complex stresses -- 2.7. Expression of the fundamental stress combinations in terms of the complex stresses -- 2.8. Effective stress functions -- 2.9. The shear function -- Examples II -- III. Isotropic beams -- 3.1. The boundary conditions for a prismatic beam -- 3.2. The isotropic beam -- 3.3. Classification of certain antiplane problems -- 3.4. The equations which give the displacement in pure antiplane stress -- 3.5. The boundary condition for the pure antiplane problem for isotropic beams -- 3.6. Simple extension -- 3.7. Bending by terminal couples -- 3.8. Circular cylinder pushed into a hole -- Examples III -- IV. The torsion of isotropic beams -- 4.1. The torsion problem -- 4.2. Lines of shearing stress -- 4.3. The twisting moment -- 4.4. Solution by conformal mapping -- 4.5. The $$ z\bar z $$method -- 4.6. Boundary conditions -- 4.7. A uniqueness theorem -- 4.8. The principle of virtual stresses -- 4.9. Torsion of a compound bar of isotropic materials -- Examples IV -- V. The flexure of isotropic beams -- 5.1. The flexure problem -- 5.2. The centre of flexure -- 5.3. Half-sections -- 5.4. Shear stress functions -- 5.5. de St. Venant's flexure function -- Examples V -- VI. Antiplane of elastic symmetry -- 6.1. Bending by couples -- 6.2. Boundary conditions -- 6.3. A device for transforming integrals -- 6.4. Simplifying assumptions -- 6.5. Antiplane of elastic symmetry -- 6.6. The striess component zz -- 6.7. Orthotropic material -- 6.8. Methods of approximation -- Examples VI -- VII. General linear and cylindrical anisotropy -- 7.1. Generalized plane deformation -- 7.2. Line force applied to an elastic half-plane -- 7.3. Induced mappings for the region exterior to an ellipse -- 7.4. Bending of a cantilever by a transverse force at the free end -- 7.5. Cylindrical anisotropy -- 7.6. Equations satisfied by the stress functions -- 7.7. Circular tube under pressure -- Examples VII -- References."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/3855453364> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/3855453364#Series/ergebnisse_der_angewandten_mathematik> ; # Ergebnisse der angewandten Mathematik ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1903607> ;
    schema:name "Antiplane elastic systems."@en ;
    schema:productID "562781046" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/562781046#PublicationEvent/berlin_springer_1962> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/3855453364#Agent/springer> ; # Springer
    schema:url <http://catalog.hathitrust.org/api/volumes/oclc/1903607.html> ;
    schema:url <http://books.google.com/books?id=OABRAAAAMAAJ> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3098321> ;
    schema:url <http://books.google.com/books?id=VHCzAAAAIAAJ> ;
    schema:url <http://dx.doi.org/10.1007/978-3-642-85627-3> ;
    schema:workExample <http://worldcat.org/isbn/9783642856273> ;
    schema:workExample <http://worldcat.org/isbn/9783540028055> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-642-85627-3> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/562781046> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/3855453364#Series/ergebnisse_der_angewandten_mathematik> # Ergebnisse der angewandten Mathematik ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/562781046> ; # Antiplane elastic systems.
    schema:name "Ergebnisse der angewandten Mathematik ;" ;
    .

<http://id.worldcat.org/fast/904211> # Elasticity
    a schema:Intangible ;
    schema:name "Elasticity"@en ;
    .

<http://viaf.org/viaf/85174430> # Louis Melville Milne-Thomson
    a schema:Person ;
    schema:birthDate "1891" ;
    schema:deathDate "1974" ;
    schema:familyName "Milne-Thomson" ;
    schema:givenName "Louis Melville" ;
    schema:givenName "L. M." ;
    schema:name "Louis Melville Milne-Thomson" ;
    .

<http://worldcat.org/isbn/9783540028055>
    a schema:ProductModel ;
    schema:isbn "3540028056" ;
    schema:isbn "9783540028055" ;
    .

<http://worldcat.org/isbn/9783642856273>
    a schema:ProductModel ;
    schema:isbn "3642856276" ;
    schema:isbn "9783642856273" ;
    .

<http://www.worldcat.org/oclc/1903607>
    a schema:CreativeWork ;
    rdfs:label "Antiplane elastic systems." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/562781046> ; # Antiplane elastic systems.
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.