skip to content
Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds Preview this item
ClosePreview this item
Checking...

Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds

Author: Radu Laza; Matthias Schütt; Noriko Yui; Fields Institute for Research in Mathematical Sciences.
Publisher: New York : Springer, 2013.
Series: Fields Institute communications, v. 67.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
Arising from a 2011 workshop at the Fields Institute, this book reviews Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds. Offers lectures and papers on arithmetic and algebraic geometry, differential geometry, mathematical physics and more.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Conference proceedings
Conference papers and proceedings
Congresses
Document Type: Book
All Authors / Contributors: Radu Laza; Matthias Schütt; Noriko Yui; Fields Institute for Research in Mathematical Sciences.
ISBN: 1461464021 9781461464020
OCLC Number: 821217437
Description: xxvi, 602 pages : illustrations ; 24 cm.
Contents: .-Preface.-Introduction.- List of Participants.- K3 and Enriques Surfaces (S. Kondo).- Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi-Yau Varieties (J.D. Lewis).- Two Lectures on the Arithmetic of K3 Surfaces (M. Schutt).- Modularity of Calabi-Yau Varieties (N. Yui).- Explicit Algebraic Coverings of a Pointed Torus (A. Anema, J. Top).- Elliptic Fibrations on the Modular Surface Associated to 1(8).- Universal Kummer Families over Shimura Curves (A. Besser, R. Livne).- Numerical Trivial Automorphisms of Enriques Surfaces in Arbitrary Characteristic (I.V. Dolgachev).- Picard-Fuchs Equations of Special One-Parameter Families of Invertible Polynomials (S. Gahrs).- A Structure Theorem for Fibrations on Delsarte Surfaces (B. Heijne, R. Kloosterman).- Fourier-Mukai Partners and Polarised K3 Surfaces (K. Hulek, D. Ploog).- On a Family of K3 Surfaces with S4 Symmetry (D. Karp, J. Lewish, D. Moore, D. Skjorshammer, U. Whitcher).- K1ind of Elliptically Fibered K3 Surfaces (M. Kerr).- A Note About Special Cycles on Moduli Spaces of K3 Surfaces (S. Kudla).- Enriques Surfaces of Hutchinson-Goepel Type and Mathieu Automorphisms (S. Mukai, H. Ohashi).- Quartic K3 Surfaces and Cremona Transformations (K. Oguiso).- Invariants of Regular Models of the Product of Two Elliptical Curves at a Place of Multiplicative Reduction (C. Schoen).- Dynamics of Special Points on Intermediate Jacobians (X. Chen, J.D. Lewis).- Calabi-Yau Conifold Expansions (S. Cynk, D. van Straten).- Quadratic Twists of Rigid Calabi-Yau Threefolds over Q (F.Q. Gouvea, I. Kimming, N. Yui).- Counting Sheaves on Calabi-Yau and Abelian Threefolds (M.G. Gulbrandsen).- The Serge Cubic and Borcherds Products (S. Kondo).- Quadi-Modular Forms Attached to Hodge Structures (H. Movasati).- The Zero Locus of the Infinitesimal Invariable (G. Pearlstein, Ch. Schnell).
Series Title: Fields Institute communications, v. 67.
Responsibility: Radu Laza, Matthias Schütt, Noriko Yui, editors.

Abstract:

Arising from a 2011 workshop at the Fields Institute, this book reviews Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds. Offers lectures and papers on arithmetic and algebraic  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/821217437> # Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "821217437" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1362282518#Topic/threefolds_algebraic_geometry> ; # Threefolds (Algebraic geometry)
    schema:about <http://experiment.worldcat.org/entity/work/data/1362282518#Topic/k_3_flache> ; # K 3- Fläche
    schema:about <http://id.loc.gov/authorities/subjects/sh85130734> ; # Surfaces, Algebraic
    schema:about <http://experiment.worldcat.org/entity/work/data/1362282518#Topic/surfaces_algebraic> ; # Surfaces, Algebraic
    schema:about <http://dewey.info/class/516.352/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1362282518#Topic/calabi_yau_mannigfaltigkeit> ; # Calabi-Yau-Mannigfaltigkeit
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/138323392> ; # Fields Institute for Research in Mathematical Sciences.
    schema:datePublished "2013" ;
    schema:description "Arising from a 2011 workshop at the Fields Institute, this book reviews Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds. Offers lectures and papers on arithmetic and algebraic geometry, differential geometry, mathematical physics and more."@en ;
    schema:editor <http://viaf.org/viaf/8281558> ; # Radu Laza
    schema:editor <http://viaf.org/viaf/8543105> ; # Matthias Schütt
    schema:editor <http://viaf.org/viaf/79164131> ; # Noriko Yui
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1362282518> ;
    schema:genre "Conference papers and proceedings"@en ;
    schema:genre "Conference proceedings"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1362282518#Series/fields_institute_communications> ; # Fields Institute communications ;
    schema:name "Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds"@en ;
    schema:productID "821217437" ;
    schema:workExample <http://worldcat.org/isbn/9781461464020> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB337964> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/821217437> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1362282518#Series/fields_institute_communications> # Fields Institute communications ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/821217437> ; # Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds
    schema:name "Fields Institute communications ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/1362282518#Topic/calabi_yau_mannigfaltigkeit> # Calabi-Yau-Mannigfaltigkeit
    a schema:Intangible ;
    schema:name "Calabi-Yau-Mannigfaltigkeit"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1362282518#Topic/surfaces_algebraic> # Surfaces, Algebraic
    a schema:Intangible ;
    schema:name "Surfaces, Algebraic"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1362282518#Topic/threefolds_algebraic_geometry> # Threefolds (Algebraic geometry)
    a schema:Intangible ;
    schema:name "Threefolds (Algebraic geometry)"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85130734> # Surfaces, Algebraic
    a schema:Intangible ;
    schema:name "Surfaces, Algebraic"@en ;
    .

<http://viaf.org/viaf/138323392> # Fields Institute for Research in Mathematical Sciences.
    a schema:Organization ;
    schema:name "Fields Institute for Research in Mathematical Sciences." ;
    .

<http://viaf.org/viaf/79164131> # Noriko Yui
    a schema:Person ;
    schema:familyName "Yui" ;
    schema:givenName "Noriko" ;
    schema:name "Noriko Yui" ;
    .

<http://viaf.org/viaf/8281558> # Radu Laza
    a schema:Person ;
    schema:familyName "Laza" ;
    schema:givenName "Radu" ;
    schema:name "Radu Laza" ;
    .

<http://viaf.org/viaf/8543105> # Matthias Schütt
    a schema:Person ;
    schema:familyName "Schütt" ;
    schema:givenName "Matthias" ;
    schema:name "Matthias Schütt" ;
    .

<http://worldcat.org/isbn/9781461464020>
    a schema:ProductModel ;
    schema:isbn "1461464021" ;
    schema:isbn "9781461464020" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.