skip to content
Atom-molecule collision theory : a guide for the experimentalist Preview this item
ClosePreview this item
Checking...

Atom-molecule collision theory : a guide for the experimentalist

Author: Richard B Bernstein
Publisher: New York : Plenum Press, ©1979.
Series: Physics of atoms and molecules.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Atom-molecule collision theory.
New York : Plenum Press, ©1979
(DLC) 78027380
(OCoLC)4515377
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Richard B Bernstein
ISBN: 9781461329138 1461329132
OCLC Number: 680176920
Reproduction Notes: Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2010. MiAaHDL
Description: 1 online resource (xx, 779 pages) : illustrations.
Details: Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Contents: Chap. 1. Introduction to Atom—Molecule Collisions : The Interdependency of Theory and Experiment --
1. General Introduction --
2. The Experimentalist’s “Need to Know” --
3. Overview of Experiments in Atom—Molecule Collisions --
3.1. Elastic Scattering --
3.2. Inelastic Scattering --
3.3. Electronic Excitation and Curve Crossing --
3.4. Reactive Scattering --
4. Experimental Examples --
4.1. Elastic Scattering --
4.2. Rotationally Inelastic Scattering --
4.3. Vibrationally Inelastic Scattering --
4.4. Electronic Excitation and Charge Transfer --
4.5. Reactive Atom—Molecule Scattering --
4.6. Collision-Induced Dissociation --
5. Information Content of Atom—Molecule Molecule Collision Cross Sections --
6. Future Theoretical Demands of the Experimentalist --
References --
Chap. 2. Interaction Potentials I : Atom—Molecule Molecule Potentials --
1. Current State of Ab Initio Electronic Structure Theory --
2. Philosophy : Judicious Synthesis of Theory and Experiment --
3. Brief Survey of Methods --
3.1. Basis Sets --
3.2. The Problem of Electron Correlation --
3.2.1. The Concept --
3.2.2. Configuration Interaction (CI) --
4. Examples --
4.1. Nonreactive --
4.1.1. Li+—H2 --
4.1.2. He—H2CO --
4.2. Reactive --
4.2.1. H + H2 --
4.2.2. Fluorine—Hydrogen Systems --
4.2.3. N+ + H2 --
4.2.4. H + Li2, F + Li2 --
4.2.5. H + C1H, H + BrH --
5. Concluding Remarks --
References --
Chap. 3. Interaction Potentials II: Semiempirical Atom—Molecule Potentials for Collision Theory --
1. Introduction --
1.1. Potential Surfaces for Collision Theory --
1.2. Requisites for the Potential Energy Surface and Its Representation --
1.2.1. Physical Requirements --
1.2.2. Computational Requirements --
1.3. Selection of Methods --
2. The Method of Diatomics-in-Molecules (DIM) --
2.1. Introduction --
2.2. General Formulation --
2.2.1. Defining the Scope of the Problem --
2.2.2. The DIM Basis Set --
2.2.3. The DIM Hamiltonian Matrix --
2.2.4. The DIM Eigenvalues --
2.3. A Specific Example: FH2 --
2.3.1. Define the Coordinate System --
2.3.2. Define the Atomic Basis Functions and Fragment Matrices --
2.3.3. Define the Diatomic Basis and Fragment Matrices --
2.3.4. Compute the Rotated Fragment Matrices --
2.3.5. Construct the Triatomic Basis --
2.3.6. Construct the Atomic Matrices B --
2.3.7. Construct the Diatomic Matrices B --
2.3.8. Find the DIM Eigenvalues --
2.4. Simple Systems: An Alternative Formulation --
2.5. Coupling --
2.5.1. Spin—Orbit Coupling --
2.5.2. Nonadiabatic Coupling --
3. Methods Related to DIM --
3.1. The LEPS Method --
3.2. Method of Blais and Truhlar --
3.3. Valence-Bond Methods --
3.3.1. Porter—Karplus Surface for H3 --
3.3.2. Valence-Bond Methods with Transferable Parameters --
3.4. Simple Approach to Nonadiabatic Coupling --
References --
Chap. 4. Elastic Scattering Cross Sections I: Spherical Potentials --
1. Introduction --
2. Intermolecular Potential --
2.1. The Concept of an Intermolecular Potential --
2.2. General Behavior of the Intermolecular Potential --
2.3. Potential Models Used in the Evaluation of Scattering Cross Sections --
2.3.1. Basic Potential Models --
2.3.2. Modifications of the Basic Potentials and Piecewise Analytic Potentials --
2.3.3. The Simons—Parr—Finlan (SPF) Modified Dunham Expansion --
3. Definitions of the Quantities That Can Be Measured in Elastic-Scattering Experiments. Influence of Experimental Conditions --
4. Classical Scattering Theory --
4.1. Basic Formulas --
4.2. Differential Cross Section --
4.2.1. Small-Angle Scattering --
4.2.2. Glory Scattering --
4.2.3. Rainbow Scattering --
4.2.4. Large-Angle Scattering --
4.2.5. Orbiting Collisions --
4.2.6. Summary of the Classical Results for the Differential Scattering Cross Section and Limits of Validity --
4.3. Total Elastic Cross Sections --
4.4. Identical Particles --
4.5. First-Order Momentum Approximation and Results for the Basic Potentials --
5. Quantal Treatment --
5.1. Introduction --
5.2. Stationary Scattering Theory and Partial-Wave Analysis --
5.3. Examples of Numerical Results --
5.3.1. Differential Cross Sections --
5.3.2. Total Scattering Cross Section --
5.4. Resonance Scattering --
5.5. Identical Particles --
6. Semiclassical Approximation --
6.1. General Assumptions and Introductory Remarks --
6.2. Special Features of the Differential Cross Section --
6.2.1. Interference Effects --
6.2.2. Rainbow Scattering --
6.2.3. Orbiting Collisions --
6.2.4. Large-Angle Scattering --
6.2.5. Glory Scattering --
6.2.6. Small-Angle Scattering (Forward Diffraction Peak) --
6.3. Special Features of the Total Elastic Scattering Cross Section --
6.4. Identical Particles --
6.5. High-Energy Approximation --
6.5.1. Brief Outline of the Method --
6.5.2. Results for the Basic-Potential Models --
7. Methods for the Evaluation of Potentials from Experimental Scattering Data --
7.1. General Survey --
7.2. Semiclassical Inversion Procedures --
7.2.1. Determination of the Repulsive Part of the Potential from the s-Phase as a Function of the Energy --
7.2.2. Determination of the Potential from the Phase Shift Function or the Deflection Function at a Fixed Energy --
7.2.3. Determination of the Phase Shift Function ?(?) or the Classical Deflection Function ?(?) from an Analysis of Differential Cross Section Data --
7.2.4. The Inverse Problem in the High-Energy Approximation --
7.3. The Trial and Error Method and Regression Procedures --
7.4. The Use of Pseudopotentials --
References --
Chap. 5. Elastic Scattering Cross Sections II: Noncentral Potentials --
1. Introduction --
2. Angular-Dependent Potentials --
2.1. The General Form --
2.2. The Long-Range Terms --
2.3. Eccentricity Effects --
2.4. Action Integrals --
3. General Expressions and Close-Coupling Calculations --
4. The Distorted-Wave Approximation --
5. Sudden Approximation --
6. The Calculation of Cross Sections in Sudden Approximation --
6.1. The Differential Cross Section in Sudden Approximation --
6.2. The Integral Cross Section in Sudden Approximation: The Nonglory Contribution --
6.3. The Total Integral Cross Section in Sudden Approximation: The Glory Contribution --
7. Conclusions --
Glossary of Abbreviations --
References --
Chap. 6. Inelastic Scattering Cross Sections I: Theory --
1. Introduction --
2. Observables and Averaging --
3. Quantum Theory of Inelastic Scattering --
3.1. Formal Quantum Theory --
3.2. Angular Momentum Conservation, Parity, and Close-Coupled Equations --
3.3. Asymptotic Forms and the S Matrix --
3.4. Symmetry and Microscopic Reversibility --
3.5. Integral Equations and Square Integrable Techniques --
4. Approximate Approaches --
4.1. Dimension-Reducing Approximations (DRA’s) --
4.2. Perturbation Theory --
4.3. Chemical Dynamics --
References --
Chap. 7. Inelastic Scattering Cross Sections II: Approximation Methods --
1. Introduction --
2. Rotational Excitation --
3. Vibrational Excitation --
4. Electronic Excitation --
References --
Chap. 8. Rotational Excitation I: The Quantal Treatment --
1. Introduction --
2. The Coupled Equations for Rotational Scattering --
3. Solution of the Close-Coupling Equations --
4. Methods of Solution of the Coupled Scattering Equations --
4.1. The Approximate-Solution Approach in the Solution-Following Technique: The Method of Sams and Kouri --
4.2. The Approximate-Potential Approach in the Solution-Following Technique --
4.3. The Approximate-Potential Approach in the Invariant-Imbedding: Technique: The R-Matrix Method --
4.4. The Approximate-Solution Approach in the Invariant-Imbedding Technique: The Log-Derivative Method --
References --
Chap. 9. Rotational Excitation II: Approximation Methods --
1. Introduction --
2. The CS Approximation --
2.1. The Basic CS Equations --
2.2. The CS Scattering Amplitude and Boundary Conditions --
2.3. CS Differential and Integral Cross Sections --
2.4. CS Approximation for General Relaxation Cross Sections --
3. The IOS Approximation --
3.1. Basic IOS Equations and Boundary Conditions --
3.2. IOS Cross Sections and Factorizations --
3.3. IOS Factored Rates and Transport Properties --
4. The lz-Conserving Energy Sudden Approximation --
4.1. Basic lz-Conserving Equations and Boundary Conditions --
4.2. Factorization of lz-Conserving Amplitudes and Cross Sections --
5. The Decoupled l-Dominant Approximation --
6. Exponential Distorted-Wave Approximation --
7. Semiclassical Approximation --
8. Method Selection --
8.1. Energy Sudden Approximation --
8.2. Centrifugal Sudden Approximation --
8.3. Infinite-Order Sudden Approximation --
8.4. lz-Conserving and DLD Approximations --
8.5. Exponential Distorted-Wave Approximation --
8.6. Semiclassical Approximations --
8.7. Full Close Coupling --
References --
Chap. 10. Rotational Excitation III: Classical Trajectory Methods --
1. Introduction --
2. Ingredients of a Trajectory Calculation --
2.1. Equations of Motion --
2.2. Selection of Initial Conditions --
2.3. Integration of Equations of Motion --
2.4. Analysis of Final Conditions --
3. Construction of a Trajectory Program --
4. Efficiency-Improving Techniques --
4.1. Alternative Sampling Schemes --
4.2. Moment Methods --
5. Concluding Remarks --
References --
Chap. 11. Vibrational Excitation I: The Quantal Treatment --
1. Introduction --
2. Angular Momentum Decoupling Approximations --
3. Asymptotic Expansion Technique for Handling Long-Range Potentials --
4. Effects of the Dissociative Continuum --
References --
Chap. 12. Vibrational Excitation II: Classical and Semiclassical Methods --
1. Introduction --
2. Quasiclassical Methods --
3. Semiclassical Methods --
3.1. Quantal Internal Modes Coupled through the Interaction Potential to Classical Translational Motion --
3.2. Classical S-Matrix Theory --
3.3. Classical—Quantal Correspondence Methods --
3.3.1. The decent and indecent Methods --
3.3.2. The Strong-Coupling Correspondence Principle --
3.4. Models for Special Cases --
3.4.1. itfits Models --
3.4.2. Angular Dependence of Impulsive Energy Transfer --
3.
Series Title: Physics of atoms and molecules.
Responsibility: edited by Richard B. Bernstein.

Abstract:

The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi- mental and theoretical.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/680176920> # Atom-molecule collision theory : a guide for the experimentalist
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "680176920" ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/899614317#Topic/moleculen> ; # Moleculen
    schema:about <http://id.worldcat.org/fast/820562> ; # Atom-molecule collisions
    schema:about <http://experiment.worldcat.org/entity/work/data/899614317#Topic/collisions_physique_nucleaire> ; # Collisions (Physique nucléaire)
    schema:about <http://experiment.worldcat.org/entity/work/data/899614317#Topic/atomen> ; # Atomen
    schema:about <http://experiment.worldcat.org/entity/work/data/899614317#Topic/botsingen> ; # Botsingen
    schema:about <http://dewey.info/class/539.754/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/899614317#Topic/atom_molekul_stoss> ; # Atom-Molekül-Stoß
    schema:about <http://experiment.worldcat.org/entity/work/data/899614317#Topic/aufsatzsammlung> ; # Aufsatzsammlung
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/108999228> ; # Richard Barry Bernstein
    schema:copyrightYear "1979" ;
    schema:datePublished "1979" ;
    schema:description "Basic IOS Equations and Boundary Conditions -- 3.2. IOS Cross Sections and Factorizations -- 3.3. IOS Factored Rates and Transport Properties -- 4. The lz-Conserving Energy Sudden Approximation -- 4.1. Basic lz-Conserving Equations and Boundary Conditions -- 4.2. Factorization of lz-Conserving Amplitudes and Cross Sections -- 5. The Decoupled l-Dominant Approximation -- 6. Exponential Distorted-Wave Approximation -- 7. Semiclassical Approximation -- 8. Method Selection -- 8.1. Energy Sudden Approximation -- 8.2. Centrifugal Sudden Approximation -- 8.3. Infinite-Order Sudden Approximation -- 8.4. lz-Conserving and DLD Approximations -- 8.5. Exponential Distorted-Wave Approximation -- 8.6. Semiclassical Approximations -- 8.7. Full Close Coupling -- References -- Chap. 10. Rotational Excitation III: Classical Trajectory Methods -- 1. Introduction -- 2. Ingredients of a Trajectory Calculation -- 2.1. Equations of Motion -- 2.2. Selection of Initial Conditions -- 2.3. Integration of Equations of Motion -- 2.4. Analysis of Final Conditions -- 3. Construction of a Trajectory Program -- 4. Efficiency-Improving Techniques -- 4.1. Alternative Sampling Schemes -- 4.2. Moment Methods -- 5. Concluding Remarks -- References -- Chap. 11. Vibrational Excitation I: The Quantal Treatment -- 1. Introduction -- 2. Angular Momentum Decoupling Approximations -- 3. Asymptotic Expansion Technique for Handling Long-Range Potentials -- 4. Effects of the Dissociative Continuum -- References -- Chap. 12. Vibrational Excitation II: Classical and Semiclassical Methods -- 1. Introduction -- 2. Quasiclassical Methods -- 3. Semiclassical Methods -- 3.1. Quantal Internal Modes Coupled through the Interaction Potential to Classical Translational Motion -- 3.2. Classical S-Matrix Theory -- 3.3. Classical—Quantal Correspondence Methods -- 3.3.1. The decent and indecent Methods -- 3.3.2. The Strong-Coupling Correspondence Principle -- 3.4. Models for Special Cases -- 3.4.1. itfits Models -- 3.4.2. Angular Dependence of Impulsive Energy Transfer -- 3."@en ;
    schema:description "The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated."@en ;
    schema:description "Chap. 1. Introduction to Atom—Molecule Collisions : The Interdependency of Theory and Experiment -- 1. General Introduction -- 2. The Experimentalist’s “Need to Know” -- 3. Overview of Experiments in Atom—Molecule Collisions -- 3.1. Elastic Scattering -- 3.2. Inelastic Scattering -- 3.3. Electronic Excitation and Curve Crossing -- 3.4. Reactive Scattering -- 4. Experimental Examples -- 4.1. Elastic Scattering -- 4.2. Rotationally Inelastic Scattering -- 4.3. Vibrationally Inelastic Scattering -- 4.4. Electronic Excitation and Charge Transfer -- 4.5. Reactive Atom—Molecule Scattering -- 4.6. Collision-Induced Dissociation -- 5. Information Content of Atom—Molecule Molecule Collision Cross Sections -- 6. Future Theoretical Demands of the Experimentalist -- References -- Chap. 2. Interaction Potentials I : Atom—Molecule Molecule Potentials -- 1. Current State of Ab Initio Electronic Structure Theory -- 2. Philosophy : Judicious Synthesis of Theory and Experiment -- 3. Brief Survey of Methods -- 3.1. Basis Sets -- 3.2. The Problem of Electron Correlation -- 3.2.1. The Concept -- 3.2.2. Configuration Interaction (CI) -- 4. Examples -- 4.1. Nonreactive -- 4.1.1. Li+—H2 -- 4.1.2. He—H2CO -- 4.2. Reactive -- 4.2.1. H + H2 -- 4.2.2. Fluorine—Hydrogen Systems -- 4.2.3. N+ + H2 -- 4.2.4. H + Li2, F + Li2 -- 4.2.5. H + C1H, H + BrH -- 5. Concluding Remarks -- References -- Chap. 3. Interaction Potentials II: Semiempirical Atom—Molecule Potentials for Collision Theory -- 1. Introduction -- 1.1. Potential Surfaces for Collision Theory -- 1.2. Requisites for the Potential Energy Surface and Its Representation -- 1.2.1. Physical Requirements -- 1.2.2. Computational Requirements -- 1.3. Selection of Methods -- 2. The Method of Diatomics-in-Molecules (DIM) -- 2.1. Introduction -- 2.2. General Formulation -- 2.2.1. Defining the Scope of the Problem -- 2.2.2. The DIM Basis Set -- 2.2.3. The DIM Hamiltonian Matrix -- 2.2.4. The DIM Eigenvalues -- 2.3. A Specific Example: FH2 -- 2.3.1. Define the Coordinate System -- 2.3.2. Define the Atomic Basis Functions and Fragment Matrices -- 2.3.3. Define the Diatomic Basis and Fragment Matrices -- 2.3.4. Compute the Rotated Fragment Matrices -- 2.3.5. Construct the Triatomic Basis -- 2.3.6. Construct the Atomic Matrices B -- 2.3.7. Construct the Diatomic Matrices B -- 2.3.8. Find the DIM Eigenvalues -- 2.4. Simple Systems: An Alternative Formulation -- 2.5. Coupling -- 2.5.1. Spin—Orbit Coupling -- 2.5.2. Nonadiabatic Coupling -- 3. Methods Related to DIM -- 3.1. The LEPS Method -- 3.2. Method of Blais and Truhlar -- 3.3. Valence-Bond Methods -- 3.3.1. Porter—Karplus Surface for H3 -- 3.3.2. Valence-Bond Methods with Transferable Parameters -- 3.4. Simple Approach to Nonadiabatic Coupling -- References -- Chap. 4. Elastic Scattering Cross Sections I: Spherical Potentials -- 1. Introduction -- 2. Intermolecular Potential -- 2.1. The Concept of an Intermolecular Potential -- 2.2. General Behavior of the Intermolecular Potential -- 2.3. Potential Models Used in the Evaluation of Scattering Cross Sections -- 2.3.1. Basic Potential Models -- 2.3.2. Modifications of the Basic Potentials and Piecewise Analytic Potentials -- 2.3.3. The Simons—Parr—Finlan (SPF) Modified Dunham Expansion -- 3. Definitions of the Quantities That Can Be Measured in Elastic-Scattering Experiments. Influence of Experimental Conditions -- 4. Classical Scattering Theory -- 4.1. Basic Formulas -- 4.2. Differential Cross Section -- 4.2.1. Small-Angle Scattering -- 4.2.2. Glory Scattering -- 4.2.3. Rainbow Scattering -- 4.2.4. Large-Angle Scattering -- 4.2.5. Orbiting Collisions -- 4.2.6. Summary of the Classical Results for the Differential Scattering Cross Section and Limits of Validity -- 4.3. Total Elastic Cross Sections -- 4.4. Identical Particles -- 4.5. First-Order Momentum Approximation and Results for the Basic Potentials -- 5. Quantal Treatment -- 5.1. Introduction -- 5.2. Stationary Scattering Theory and Partial-Wave Analysis -- 5.3. Examples of Numerical Results -- 5.3.1. Differential Cross Sections -- 5.3.2. Total Scattering Cross Section -- 5.4. Resonance Scattering -- 5.5. Identical Particles -- 6. Semiclassical Approximation -- 6.1. General Assumptions and Introductory Remarks -- 6.2. Special Features of the Differential Cross Section -- 6.2.1. Interference Effects -- 6.2.2. Rainbow Scattering -- 6.2.3. Orbiting Collisions -- 6.2.4. Large-Angle Scattering -- 6.2.5. Glory Scattering -- 6.2.6. Small-Angle Scattering (Forward Diffraction Peak) -- 6.3. Special Features of the Total Elastic Scattering Cross Section -- 6.4. Identical Particles -- 6.5. High-Energy Approximation -- 6.5.1. Brief Outline of the Method -- 6.5.2. Results for the Basic-Potential Models -- 7. Methods for the Evaluation of Potentials from Experimental Scattering Data -- 7.1. General Survey -- 7.2. Semiclassical Inversion Procedures -- 7.2.1. Determination of the Repulsive Part of the Potential from the s-Phase as a Function of the Energy -- 7.2.2. Determination of the Potential from the Phase Shift Function or the Deflection Function at a Fixed Energy -- 7.2.3. Determination of the Phase Shift Function ?(?) or the Classical Deflection Function ?(?) from an Analysis of Differential Cross Section Data -- 7.2.4. The Inverse Problem in the High-Energy Approximation -- 7.3. The Trial and Error Method and Regression Procedures -- 7.4. The Use of Pseudopotentials -- References -- Chap. 5. Elastic Scattering Cross Sections II: Noncentral Potentials -- 1. Introduction -- 2. Angular-Dependent Potentials -- 2.1. The General Form -- 2.2. The Long-Range Terms -- 2.3. Eccentricity Effects -- 2.4. Action Integrals -- 3. General Expressions and Close-Coupling Calculations -- 4. The Distorted-Wave Approximation -- 5. Sudden Approximation -- 6. The Calculation of Cross Sections in Sudden Approximation -- 6.1. The Differential Cross Section in Sudden Approximation -- 6.2. The Integral Cross Section in Sudden Approximation: The Nonglory Contribution -- 6.3. The Total Integral Cross Section in Sudden Approximation: The Glory Contribution -- 7. Conclusions -- Glossary of Abbreviations -- References -- Chap. 6. Inelastic Scattering Cross Sections I: Theory -- 1. Introduction -- 2. Observables and Averaging -- 3. Quantum Theory of Inelastic Scattering -- 3.1. Formal Quantum Theory -- 3.2. Angular Momentum Conservation, Parity, and Close-Coupled Equations -- 3.3. Asymptotic Forms and the S Matrix -- 3.4. Symmetry and Microscopic Reversibility -- 3.5. Integral Equations and Square Integrable Techniques -- 4. Approximate Approaches -- 4.1. Dimension-Reducing Approximations (DRA’s) -- 4.2. Perturbation Theory -- 4.3. Chemical Dynamics -- References -- Chap. 7. Inelastic Scattering Cross Sections II: Approximation Methods -- 1. Introduction -- 2. Rotational Excitation -- 3. Vibrational Excitation -- 4. Electronic Excitation -- References -- Chap. 8. Rotational Excitation I: The Quantal Treatment -- 1. Introduction -- 2. The Coupled Equations for Rotational Scattering -- 3. Solution of the Close-Coupling Equations -- 4. Methods of Solution of the Coupled Scattering Equations -- 4.1. The Approximate-Solution Approach in the Solution-Following Technique: The Method of Sams and Kouri -- 4.2. The Approximate-Potential Approach in the Solution-Following Technique -- 4.3. The Approximate-Potential Approach in the Invariant-Imbedding: Technique: The R-Matrix Method -- 4.4. The Approximate-Solution Approach in the Invariant-Imbedding Technique: The Log-Derivative Method -- References -- Chap. 9. Rotational Excitation II: Approximation Methods -- 1. Introduction -- 2. The CS Approximation -- 2.1. The Basic CS Equations -- 2.2. The CS Scattering Amplitude and Boundary Conditions -- 2.3. CS Differential and Integral Cross Sections -- 2.4. CS Approximation for General Relaxation Cross Sections -- 3. The IOS Approximation -- 3.1."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/899614317> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/899614317#Series/physics_of_atoms_and_molecules> ; # Physics of atoms and molecules.
    schema:isSimilarTo <http://www.worldcat.org/oclc/4515377> ;
    schema:name "Atom-molecule collision theory : a guide for the experimentalist"@en ;
    schema:productID "680176920" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/680176920#PublicationEvent/new_york_plenum_press_1979> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/899614317#Agent/plenum_press> ; # Plenum Press
    schema:url <http://dx.doi.org/10.1007/978-1-4613-2913-8> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-0-306-40121-3> ;
    schema:url <http://books.google.com/books?id=Ur04AQAAIAAJ> ;
    schema:url <http://catalog.hathitrust.org/api/volumes/oclc/4515377.html> ;
    schema:workExample <http://worldcat.org/isbn/9781461329138> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/680176920> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/899614317#Agent/plenum_press> # Plenum Press
    a bgn:Agent ;
    schema:name "Plenum Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/899614317#Series/physics_of_atoms_and_molecules> # Physics of atoms and molecules.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/680176920> ; # Atom-molecule collision theory : a guide for the experimentalist
    schema:name "Physics of atoms and molecules." ;
    schema:name "Physics of atoms and molecules" ;
    .

<http://experiment.worldcat.org/entity/work/data/899614317#Topic/atom_molekul_stoss> # Atom-Molekül-Stoß
    a schema:Intangible ;
    schema:name "Atom-Molekül-Stoß"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/899614317#Topic/collisions_physique_nucleaire> # Collisions (Physique nucléaire)
    a schema:Intangible ;
    schema:name "Collisions (Physique nucléaire)"@fr ;
    .

<http://id.worldcat.org/fast/820562> # Atom-molecule collisions
    a schema:Intangible ;
    schema:name "Atom-molecule collisions"@en ;
    .

<http://viaf.org/viaf/108999228> # Richard Barry Bernstein
    a schema:Person ;
    schema:birthDate "1923" ;
    schema:deathDate "1990" ;
    schema:familyName "Bernstein" ;
    schema:givenName "Richard Barry" ;
    schema:givenName "Richard B." ;
    schema:name "Richard Barry Bernstein" ;
    .

<http://worldcat.org/isbn/9781461329138>
    a schema:ProductModel ;
    schema:isbn "1461329132" ;
    schema:isbn "9781461329138" ;
    .

<http://www.worldcat.org/oclc/4515377>
    a schema:CreativeWork ;
    rdfs:label "Atom-molecule collision theory." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/680176920> ; # Atom-molecule collision theory : a guide for the experimentalist
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.