omitir hasta el contenido
Autonomous learning systems : from data streams to knowledge in real-time Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Autonomous learning systems : from data streams to knowledge in real-time

Autor: Plamen P Angelov
Editorial: Chichester, West Sussex, United Kingdom : Wiley, a John Wiley & Sons, Ltd., Publication, 2013.
Edición/Formato:   Print book : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:

 Leer más

Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de documento: Libro/Texto
Todos autores / colaboradores: Plamen P Angelov
ISBN: 9781119951520 1119951526 1118481909 9781118481905
Número OCLC: 798615034
Descripción: xxiv, 273 pages : illustrations ; 26 cm
Contenido: <p>Forewords xi <p>Preface xix <p>About the Author xxiii <p>1 Introduction 1 <p>1.1 Autonomous Systems 3 <p>1.2 The Role of Machine Learning in Autonomous Systems 4 <p>1.3 System Identification an Abstract Model of the RealWorld 6 <p>1.4 Online versus Offline Identification 9 <p>1.5 Adaptive and Evolving Systems 10 <p>1.6 Evolving or Evolutionary Systems 11 <p>1.7 Supervised versus Unsupervised Learning 13 <p>1.8 Structure of the Book 14 <p>PART I FUNDAMENTALS <p>2 Fundamentals of Probability Theory 19 <p>2.1 Randomness and Determinism 20 <p>2.2 Frequentistic versus Belief-Based Approach 22 <p>2.3 Probability Densities and Moments 23 <p>2.4 Density Estimation Kernel-Based Approach 26 <p>2.5 Recursive Density Estimation (RDE) 28 <p>2.6 Detecting Novelties/Anomalies/Outliers using RDE 32 <p>2.7 Conclusions 36 <p>3 Fundamentals of Machine Learning and Pattern Recognition37 <p>3.1 Preprocessing 37 <p>3.2 Clustering 42 <p>3.3 Classification 56 <p>3.4 Conclusions 58 <p>4 Fundamentals of Fuzzy Systems Theory 61 <p>4.1 Fuzzy Sets 61 <p>4.2 Fuzzy Systems, Fuzzy Rules 64 <p>4.3 Fuzzy Systems with Nonparametric Antecedents (AnYa) 69 <p>4.4 FRB (Offline) Classifiers 73 <p>4.5 Neurofuzzy Systems 75 <p>4.6 State Space Perspective 79 <p>4.7 Conclusions 81 <p>PART II METHODOLOGY OF AUTONOMOUS LEARNING SYSTEMS <p>5 Evolving System Structure from Streaming Data 85 <p>5.1 Defining System Structure Based on Prior Knowledge 85 <p>5.2 Data Space Partitioning 86 <p>5.3 Normalisation and Standardisation of Streaming Data in anEvolving Environment 96 <p>5.4 Autonomous Monitoring of the Structure Quality 98 <p>5.5 Short- and Long-Term Focal Points and Submodels 104 <p>5.6 Simplification and Interpretability Issues 105 <p>5.7 Conclusions 107 <p>6 Autonomous Learning Parameters of the Local Submodels109 <p>6.1 Learning Parameters of Local Submodels 110 <p>6.2 Global versus Local Learning 111 <p>6.3 Evolving Systems Structure Recursively 113 <p>6.4 Learning Modes 116 <p>6.5 Robustness to Outliers in Autonomous Learning 118 <p>6.6 Conclusions 118 <p>7 Autonomous Predictors, Estimators, Filters, InferentialSensors 121 <p>7.1 Predictors, Estimators, Filters Problem Formulation121 <p>7.2 Nonlinear Regression 123 <p>7.3 Time Series 124 <p>7.4 Autonomous Learning Sensors 125 <p>7.5 Conclusions 131 <p>8 Autonomous Learning Classifiers 133 <p>8.1 Classifying Data Streams 133 <p>8.2 Why Adapt the Classifier Structure? 134 <p>8.3 Architecture of Autonomous Classifiers of the FamilyAutoClassify 135 <p>8.4 Learning AutoClassify from Streaming Data 139 <p>8.5 Analysis of AutoClassify 140 <p>8.6 Conclusions 140 <p>9 Autonomous Learning Controllers 143 <p>9.1 Indirect Adaptive Control Scheme 144 <p>9.2 Evolving Inverse Plant Model from Online Streaming Data145 <p>9.3 Evolving Fuzzy Controller Structure from Online StreamingData 147 <p>9.4 Examples of Using AutoControl 148 <p>9.5 Conclusions 153 <p>10 Collaborative Autonomous Learning Systems 155 <p>10.1 Distributed Intelligence Scenarios 155 <p>10.2 Autonomous Collaborative Learning 157 <p>10.3 Collaborative Autonomous Clustering, AutoCluster bya Team of ALSs 158 <p>10.4 Collaborative Autonomous Predictors, Estimators, Filtersand AutoSense by a Team of ALSs 159 <p>10.5 Collaborative Autonomous Classifiers AutoClassify bya Team of ALSs 160 <p>10.6 Superposition of Local Submodels 161 <p>10.7 Conclusions 161 <p>PART III APPLICATIONS OF ALS <p>11 Autonomous Learning Sensors for Chemical and PetrochemicalIndustries 165 <p>11.1 Case Study 1: Quality of the Products in an Oil Refinery165 <p>11.2 Case Study 2: Polypropylene Manufacturing 172 <p>11.3 Conclusions 178 <p>12 Autonomous Learning Systems in Mobile Robotics 179 <p>12.1 The Mobile Robot Pioneer 3DX 179 <p>12.2 Autonomous Classifier for Landmark Recognition 180 <p>12.3 Autonomous Leader Follower 193 <p>12.4 Results Analysis 196 <p>13 Autonomous Novelty Detection and Object Tracking in VideoStreams 197 <p>13.1 Problem Definition 197 <p>13.2 Background Subtraction and KDE for Detecting VisualNovelties 198 <p>13.3 Detecting Visual Novelties with the RDE Method 203 <p>13.4 Object Identification in Image Frames Using RDE 204 <p>13.5 Real-time Tracking in Video Streams Using ALS 206 <p>13.6 Conclusions 209 <p>14 Modelling Evolving User Behaviour with ALS 211 <p>14.1 User Behaviour as an Evolving Phenomenon 211 <p>14.2 Designing the User Behaviour Profile 212 <p>14.3 Applying AutoClassify0 for Modelling Evolving UserBehaviour 215 <p>14.4 Case Studies 216 <p>14.5 Conclusions 221 <p>15 Epilogue 223 <p>15.1 Conclusions 223 <p>15.2 Open Problems 227 <p>15.3 Future Directions 227 <p>APPENDICES <p>Appendix A Mathematical Foundations 231 <p>Appendix B Pseudocode of the Basic Algorithms 235 <p>References 245 <p>Glossary 259 <p>Index 263
Responsabilidad: Plamen Angelov, Lancaster University, UK.

Reseñas

Reseñas editoriales

Resumen de la editorial

Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/798615034>
library:oclcnum"798615034"
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2013"
schema:exampleOfWork<http://worldcat.org/entity/work/id/1165918551>
schema:inLanguage"en"
schema:name"Autonomous learning systems : from data streams to knowledge in real-time"@en
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.