omitir hasta el contenido
Autonomous learning systems : from data streams to knowledge in real-time Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Autonomous learning systems : from data streams to knowledge in real-time

Autor: Plamen P Angelov
Editorial: Chichester, West Sussex, United Kingdom : Wiley, a John Wiley & Sons, Ltd., Publication, 2013.
Edición/Formato:   Libro : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:

Autonomous Learning Systems is the result of over a decade of focused research and studies in this emerging area which spans a number of well-known and well-established disciplines that include  Leer más

Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de documento: Libro/Texto
Todos autores / colaboradores: Plamen P Angelov
ISBN: 9781119951520 1119951526 1118481909 9781118481905
Número OCLC: 798615034
Descripción: xxiv, 273 pages : illustrations ; 26 cm
Contenido: Forewords xi Preface xix About the Author xxiii 1 Introduction 1 1.1 Autonomous Systems 3 1.2 The Role of Machine Learning in Autonomous Systems 4 1.3 System Identification -- an Abstract Model of the Real World 6 1.4 Online versus Offline Identification 9 1.5 Adaptive and Evolving Systems 10 1.6 Evolving or Evolutionary Systems 11 1.7 Supervised versus Unsupervised Learning 13 1.8 Structure of the Book 14 PART I FUNDAMENTALS 2 Fundamentals of Probability Theory 19 2.1 Randomness and Determinism 20 2.2 Frequentistic versus Belief-Based Approach 22 2.3 Probability Densities and Moments 23 2.4 Density Estimation -- Kernel-Based Approach 26 2.5 Recursive Density Estimation (RDE) 28 2.6 Detecting Novelties/Anomalies/Outliers using RDE 32 2.7 Conclusions 36 3 Fundamentals of Machine Learning and Pattern Recognition 37 3.1 Preprocessing 37 3.2 Clustering 42 3.3 Classification 56 3.4 Conclusions 58 4 Fundamentals of Fuzzy Systems Theory 61 4.1 Fuzzy Sets 61 4.2 Fuzzy Systems, Fuzzy Rules 64 4.3 Fuzzy Systems with Nonparametric Antecedents (AnYa) 69 4.4 FRB (Offline) Classifiers 73 4.5 Neurofuzzy Systems 75 4.6 State Space Perspective 79 4.7 Conclusions 81 PART II METHODOLOGY OF AUTONOMOUS LEARNING SYSTEMS 5 Evolving System Structure from Streaming Data 85 5.1 Defining System Structure Based on Prior Knowledge 85 5.2 Data Space Partitioning 86 5.3 Normalisation and Standardisation of Streaming Data in an Evolving Environment 96 5.4 Autonomous Monitoring of the Structure Quality 98 5.5 Short- and Long-Term Focal Points and Submodels 104 5.6 Simplification and Interpretability Issues 105 5.7 Conclusions 107 6 Autonomous Learning Parameters of the Local Submodels 109 6.1 Learning Parameters of Local Submodels 110 6.2 Global versus Local Learning 111 6.3 Evolving Systems Structure Recursively 113 6.4 Learning Modes 116 6.5 Robustness to Outliers in Autonomous Learning 118 6.6 Conclusions 118 7 Autonomous Predictors, Estimators, Filters, Inferential Sensors 121 7.1 Predictors, Estimators, Filters -- Problem Formulation 121 7.2 Nonlinear Regression 123 7.3 Time Series 124 7.4 Autonomous Learning Sensors 125 7.5 Conclusions 131 8 Autonomous Learning Classifiers 133 8.1 Classifying Data Streams 133 8.2 Why Adapt the Classifier Structure? 134 8.3 Architecture of Autonomous Classifiers of the Family Auto Classify 135 8.4 Learning AutoClassify from Streaming Data 139 8.5 Analysis of AutoClassify 140 8.6 Conclusions 140 9 Autonomous Learning Controllers 143 9.1 Indirect Adaptive Control Scheme 144 9.2 Evolving Inverse Plant Model from Online Streaming Data 145 9.3 Evolving Fuzzy Controller Structure from Online Streaming Data 147 9.4 Examples of Using AutoControl 148 9.5 Conclusions 153 10 Collaborative Autonomous Learning Systems 155 10.1 Distributed Intelligence Scenarios 155 10.2 Autonomous Collaborative Learning 157 10.3 Collaborative Autonomous Clustering, AutoCluster by a Team of ALSs 158 10.4 Collaborative Autonomous Predictors, Estimators, Filters and AutoSense by a Team of ALSs 159 10.5 Collaborative Autonomous Classifiers AutoClassify by a Team of ALSs 160 10.6 Superposition of Local Submodels 161 10.7 Conclusions 161 PART III APPLICATIONS OF ALS 11 Autonomous Learning Sensors for Chemical and Petrochemical Industries 165 11.1 Case Study 1: Quality of the Products in an Oil Refinery 165 11.2 Case Study 2: Polypropylene Manufacturing 172 11.3 Conclusions 178 12 Autonomous Learning Systems in Mobile Robotics 179 12.1 The Mobile Robot Pioneer 3DX 179 12.2 Autonomous Classifier for Landmark Recognition 180 12.3 Autonomous Leader Follower 193 12.4 Results Analysis 196 13 Autonomous Novelty Detection and Object Tracking in Video Streams 197 13.1 Problem Definition 197 13.2 Background Subtraction and KDE for Detecting Visual Novelties 198 13.3 Detecting Visual Novelties with the RDE Method 203 13.4 Object Identification in Image Frames Using RDE 204 13.5 Real-time Tracking in Video Streams Using ALS 206 13.6 Conclusions 209 14 Modelling Evolving User Behaviour with ALS 211 14.1 User Behaviour as an Evolving Phenomenon 211 14.2 Designing the User Behaviour Profile 212 14.3 Applying AutoClassify0 for Modelling Evolving User Behaviour 215 14.4 Case Studies 216 14.5 Conclusions 221 15 Epilogue 223 15.1 Conclusions 223 15.2 Open Problems 227 15.3 Future Directions 227 APPENDICES Appendix A Mathematical Foundations 231 Appendix B Pseudocode of the Basic Algorithms 235 References 245 Glossary 259 Index 263
Responsabilidad: Plamen Angelov, Lancaster University, UK.

Reseñas

Reseñas editoriales

Resumen de la editorial

"Overall, this book presents a valuable framework for further investigation and development for researchers and software developers. Summing Up: Recommended. Graduate students and above." ( Choice , Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/798615034>
library:oclcnum"798615034"
library:placeOfPublication
owl:sameAs<info:oclcnum/798615034>
rdf:typeschema:Book
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1111791>
rdf:typeschema:Intangible
schema:name"Self-organizing systems"@en
schema:name"Self-organizing systems."@en
schema:about
schema:about
schema:creator
schema:datePublished"2013"
schema:exampleOfWork<http://worldcat.org/entity/work/id/1165918551>
schema:inLanguage"en"
schema:name"Autonomous learning systems : from data streams to knowledge in real-time"@en
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.