skip to content
Bifurcation and chaos in nonsmooth mechanical systems Preview this item
ClosePreview this item
Checking...

Bifurcation and chaos in nonsmooth mechanical systems

Author: J Awrejcewicz; Claude-Henri Lamarque
Publisher: Singapore ; River Edge, NJ : World Scientific, 2003.
Series: World Scientific series on nonlinear science., Series A,, Monographs and treatises ;, v. 45.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Awrejcewicz, J. (Jan).
Bifurcation and chaos in nonsmooth mechanical systems.
Singapore ; River Edge, NJ : World Scientific, 2003
(OCoLC)53362322
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: J Awrejcewicz; Claude-Henri Lamarque
ISBN: 9812564802 9789812564801
OCLC Number: 61048703
Description: 1 online resource (xvii, 543 pages) : illustrations (some color).
Contents: 1. Introduction to discontinuous ODEs. 1.1. Introduction. 1.2. Filippov's theory. 1.3. Aizerman's theory. 1.4. Examples. 1.5. Boundary value problem --
2. Mathematical background for multivalued formulations. 2.1. Origin of nonlinearities. 2.2. Smooth and nonsmooth nonlinearities. 2.3. Examples and dynamical equilibria. 2.4. Existence and uniqueness. 2.5. Stochastic frame --
3. Numerical schemes and analytical methods. 3.1. Numerical schemes. 3.2. Analytical methods --
4. Properties of numerical schemes. 4.1. Dynamics of systems with friction or elastoplastic terms. 4.2. Systems with impacts. 4.3. Conclusion --
5. Bifurcations of a particular van der Pol-Duffing oscillator. 5.1. The analysed system and the averaged equations. 5.2. "0" type bifurcations. 5.3. Complex bifurcations. 5.4. Observations of strange attractors using numerical simulations --
6. Stick-slip oscillator with two degrees of freedom. 6.1. Introduction. 6.2. Disc --
flexible arm oscillator. 6.3. Two horizontally situated masses --
7. Piecewise linear approximations. 7.1. Introduction. 7.2. Exact and approximated models. 7.3. Approximation and global dynamic behavior. 7.4. Numerical results. 7.5. Conclusion --
8. Chua's circuit with discontinuities. 8.1. Introduction. 8.2. Mechanical realizations of Chua's circuit. 8.3. Generalized double scroll Chua's circuit --
9. Mechanical system with impacts and modal approaches. 9.1. Introduction. 9.2. Single degree of freedom system. 9.3. Two degrees of freedom systems. 9.4. Conclusion --
10. One DOF mechanical system with friction. 10.1. Introduction. 10.2. Modelling the pendulum with friction. 10.3. Numerical results. 10.4. The Melnikov analysis. 10.5. Conclusion. 11. Modelling the dynamical behaviour of elasto-plastic systems. 11.1. Rheological systems with "friction" --
12. A mechanical system with 7 DOF. 12.1. Mathematical model. 12.2. Numerical results and comments for finite k3 --
13. Stability of singular periodic motions in single degree of freedom vibro-impact oscillators and grazing bifurcations. 13.1. Introduction. 13.2. Mechanical system and change of coordinates. 13.3. Local expansion of the Poincaré map. 13.4. Stability of the nondifferentiable fixed point. 13.5. Applications. 13.6. Conclusion --
14. Triple pendulum with impacts. 14.1. Introduction. 14.2. Investigated pendulum and governing equations (without impacts). 14.3. Introduction of the obstacles. 14.4. Calculation of the fundamental solution matrices for dynamical systems with impacts. 14.5. Simplification of the system. 14.6. The method used for integration of the system and its accuracy. 14.7. Numerical examples. 14.8. Concluding remarks --
15. Analytical prediction of stick-slip chaos. 15.1. Introduction. 15.2. The Melnikov's method. 15.3. Analyzed system. 15.4. Analytical results --
16. Thermoelasticity, wear and stick-slip movements of a rotating shaft with a rigid bush. 16.1. Introduction --
17. Control for discrete models of buildings including elastoplastic terms. 17.1. Introduction. 17.2. Reminder about Prandtl rheological model. 17.3. The studied models with n DOF. 17.4. Existence and uniqueness results. 17.5. Numerical scheme. 17.6. Control procedure. 17.7. Algorithm of control. 17.8 Numerical results for a system with 3 DOF. 17.9. Extension to nonlinear cases. 17.10. Conclusion.
Series Title: World Scientific series on nonlinear science., Series A,, Monographs and treatises ;, v. 45.
Responsibility: Jan Awrejcewicz, Claude-Henri Lamarque.

Abstract:

This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/61048703> # Bifurcation and chaos in nonsmooth mechanical systems
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "61048703" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/si> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/264395#Place/singapore> ; # Singapore
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/264395#Place/river_edge_nj> ; # River Edge, NJ
    schema:about <http://experiment.worldcat.org/entity/work/data/264395#Topic/bifurcation_theory> ; # Bifurcation theory
    schema:about <http://experiment.worldcat.org/entity/work/data/264395#Topic/chaotic_behavior_in_systems> ; # Chaotic behavior in systems
    schema:about <http://experiment.worldcat.org/entity/work/data/264395#Topic/differential_equations_nonlinear> ; # Differential equations, Nonlinear
    schema:about <http://dewey.info/class/515.35/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/264395#Topic/mathematics_differential_equations_general> ; # MATHEMATICS--Differential Equations--General
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/264395#Person/lamarque_claude_henri> ; # Claude-Henri Lamarque
    schema:creator <http://viaf.org/viaf/59190078> ; # Jan Awrejcewicz
    schema:datePublished "2003" ;
    schema:description "This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments."@en ;
    schema:description "1. Introduction to discontinuous ODEs. 1.1. Introduction. 1.2. Filippov's theory. 1.3. Aizerman's theory. 1.4. Examples. 1.5. Boundary value problem -- 2. Mathematical background for multivalued formulations. 2.1. Origin of nonlinearities. 2.2. Smooth and nonsmooth nonlinearities. 2.3. Examples and dynamical equilibria. 2.4. Existence and uniqueness. 2.5. Stochastic frame -- 3. Numerical schemes and analytical methods. 3.1. Numerical schemes. 3.2. Analytical methods -- 4. Properties of numerical schemes. 4.1. Dynamics of systems with friction or elastoplastic terms. 4.2. Systems with impacts. 4.3. Conclusion -- 5. Bifurcations of a particular van der Pol-Duffing oscillator. 5.1. The analysed system and the averaged equations. 5.2. "0" type bifurcations. 5.3. Complex bifurcations. 5.4. Observations of strange attractors using numerical simulations -- 6. Stick-slip oscillator with two degrees of freedom. 6.1. Introduction. 6.2. Disc -- flexible arm oscillator. 6.3. Two horizontally situated masses -- 7. Piecewise linear approximations. 7.1. Introduction. 7.2. Exact and approximated models. 7.3. Approximation and global dynamic behavior. 7.4. Numerical results. 7.5. Conclusion -- 8. Chua's circuit with discontinuities. 8.1. Introduction. 8.2. Mechanical realizations of Chua's circuit. 8.3. Generalized double scroll Chua's circuit -- 9. Mechanical system with impacts and modal approaches. 9.1. Introduction. 9.2. Single degree of freedom system. 9.3. Two degrees of freedom systems. 9.4. Conclusion -- 10. One DOF mechanical system with friction. 10.1. Introduction. 10.2. Modelling the pendulum with friction. 10.3. Numerical results. 10.4. The Melnikov analysis. 10.5. Conclusion."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/264395> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/264395#Series/world_scientific_series_on_nonlinear_science> ; # World Scientific series on nonlinear science.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/264395#Series/world_scientific_series_on_nonlinear_science_series_a_monographs_and_treatises> ; # World Scientific series on nonlinear science. Series A, Monographs and treatises ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/53362322> ;
    schema:name "Bifurcation and chaos in nonsmooth mechanical systems"@en ;
    schema:productID "61048703" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/61048703#PublicationEvent/singapore_river_edge_nj_world_scientific_2003> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/264395#Agent/world_scientific> ; # World Scientific
    schema:url <http://www.myilibrary.com?id=187691> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=135170> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=234346> ;
    schema:workExample <http://worldcat.org/isbn/9789812564801> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/61048703> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/264395#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
    schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Person/lamarque_claude_henri> # Claude-Henri Lamarque
    a schema:Person ;
    schema:familyName "Lamarque" ;
    schema:givenName "Claude-Henri" ;
    schema:name "Claude-Henri Lamarque" ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Place/river_edge_nj> # River Edge, NJ
    a schema:Place ;
    schema:name "River Edge, NJ" ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Series/world_scientific_series_on_nonlinear_science> # World Scientific series on nonlinear science.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/61048703> ; # Bifurcation and chaos in nonsmooth mechanical systems
    schema:name "World Scientific series on nonlinear science." ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Series/world_scientific_series_on_nonlinear_science_series_a_monographs_and_treatises> # World Scientific series on nonlinear science. Series A, Monographs and treatises ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/61048703> ; # Bifurcation and chaos in nonsmooth mechanical systems
    schema:name "World Scientific series on nonlinear science. Series A, Monographs and treatises ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Topic/bifurcation_theory> # Bifurcation theory
    a schema:Intangible ;
    schema:name "Bifurcation theory"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Topic/chaotic_behavior_in_systems> # Chaotic behavior in systems
    a schema:Intangible ;
    schema:name "Chaotic behavior in systems"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Topic/differential_equations_nonlinear> # Differential equations, Nonlinear
    a schema:Intangible ;
    schema:name "Differential equations, Nonlinear"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/264395#Topic/mathematics_differential_equations_general> # MATHEMATICS--Differential Equations--General
    a schema:Intangible ;
    schema:name "MATHEMATICS--Differential Equations--General"@en ;
    .

<http://viaf.org/viaf/59190078> # Jan Awrejcewicz
    a schema:Person ;
    schema:familyName "Awrejcewicz" ;
    schema:givenName "Jan" ;
    schema:givenName "J." ;
    schema:name "Jan Awrejcewicz" ;
    .

<http://worldcat.org/isbn/9789812564801>
    a schema:ProductModel ;
    schema:isbn "9812564802" ;
    schema:isbn "9789812564801" ;
    .

<http://www.worldcat.org/oclc/53362322>
    a schema:CreativeWork ;
    rdfs:label "Bifurcation and chaos in nonsmooth mechanical systems." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/61048703> ; # Bifurcation and chaos in nonsmooth mechanical systems
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.