zum Inhalt wechseln
Boosting : foundations and algorithms Titelvorschau
SchließenTitelvorschau
Prüfung…

Boosting : foundations and algorithms

Verfasser/in: Robert E Schapire; Yoav Freund
Herausgeber: Cambridge, MA : MIT Press, ©2012.
Serien: Adaptive computation and machine learning.
Ausgabe/Format   E-Book : Dokument : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Gattung/Form: Electronic books
Physisches Format Print version:
Schapire, Robert E.
Boosting.
Cambridge, MA : MIT Press, ©2012
(DLC) 2011038972
(OCoLC)758388404
Medientyp: Dokument, Internetquelle
Dokumenttyp Internet-Ressource, Computerdatei
Alle Autoren: Robert E Schapire; Yoav Freund
ISBN: 9780262301183 0262301180
OCLC-Nummer: 794669892
Auszeichnungen: Winner of Selected as a Best of 2012 by Computing Reviews 2012
Beschreibung: 1 online resource (xv, 526 pages) : illustrations.
Inhalt: Foundations of machine learning --
Using AdaBoost to minimize training error --
Direct bounds on the generalization error --
The margins explanation for boosting's effectiveness --
Game theory, online learning, and boosting --
Loss minimization and generalizations of boosting --
Boosting, convex optimization, and information geometry --
Using confidence-rated weak predictions --
Multiclass classification problems --
Learning to rank --
Attaining the best possible accuracy --
Optimally efficient boosting --
Boosting in continuous time.
Serientitel: Adaptive computation and machine learning.
Verfasserangabe: Robert E. Schapire and Yoav Freund.

Abstract:

A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --

Rezensionen

Redaktionelle Rezension

Nielsen BookData

This excellent book is a mind-stretcher that should be read and reread, even by nonspecialists. * <i>Computing Reviews Weiterlesen…

 
Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


Primary Entity

<http://www.worldcat.org/oclc/794669892> # Boosting : foundations and algorithms
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "794669892" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1032229637#Place/cambridge_ma> ; # Cambridge, MA
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://id.worldcat.org/fast/1893023> ; # Boosting (Algorithms)
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> ; # COMPUTERS--Intelligence (AI) & Semantics
    schema:about <http://id.worldcat.org/fast/1139041> ; # Supervised learning (Machine learning)
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> ; # COMPUTERS--Enterprise Applications--Business Intelligence Tools
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/electronic_books> ; # Electronic books
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/63543180> ; # Yoav Freund
    schema:copyrightYear "2012" ;
    schema:creator <http://viaf.org/viaf/46940747> ; # Robert E. Schapire
    schema:datePublished "2012" ;
    schema:description "A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --"@en ;
    schema:description "Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1032229637> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> ; # Adaptive computation and machine learning.
    schema:isSimilarTo <http://www.worldcat.org/oclc/758388404> ;
    schema:name "Boosting : foundations and algorithms"@en ;
    schema:productID "794669892" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/794669892#PublicationEvent/cambridge_ma_mit_press_2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1032229637#Agent/mit_press> ; # MIT Press
    schema:url <http://www.myilibrary.com?id=365528> ;
    schema:url <http://mitpress.mit.edu/images/products/books/9780262017183-f30.jpg> ;
    schema:url <http://www.books24x7.com/marc.asp?bookid=73652> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=458478> ;
    schema:url <http://site.ebrary.com/lib/interpuertorico/Doc?id=10569012> ;
    schema:url <http://ebookcentral.proquest.com/lib/concordiaab-ebooks/detail.action?docID=3339451> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3339451> ;
    schema:url <http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267536> ;
    schema:url <http://0-site.ebrary.com.webpac.lvlspa.org/lib/moravianlibrary/Doc?id=10569012> ;
    schema:url <http://ebookcentral.proquest.com/lib/gprc-ebooks/detail.action?docID=3339451> ;
    schema:url <http://ebookcentral.proquest.com/lib/macewan-ebooks/detail.action?docID=3339451> ;
    schema:url <http://ebookcentral.proquest.com/lib/rdc/detail.action?docID=3339451> ;
    schema:url <http://site.ebrary.com/id/10569012> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e020mna&AN=458478> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458478> ;
    schema:workExample <http://worldcat.org/isbn/9780262301183> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/794669892> ;
    .


Related Entities

<http://ebookcentral.proquest.com/lib/concordiaab-ebooks/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://ebookcentral.proquest.com/lib/gprc-ebooks/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://ebookcentral.proquest.com/lib/macewan-ebooks/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://ebookcentral.proquest.com/lib/rdc/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> # Adaptive computation and machine learning.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/794669892> ; # Boosting : foundations and algorithms
    schema:name "Adaptive computation and machine learning." ;
    schema:name "Adaptive computation and machine learning" ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> # COMPUTERS--Enterprise Applications--Business Intelligence Tools
    a schema:Intangible ;
    schema:name "COMPUTERS--Enterprise Applications--Business Intelligence Tools"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> # COMPUTERS--Intelligence (AI) & Semantics
    a schema:Intangible ;
    schema:name "COMPUTERS--Intelligence (AI) & Semantics"@en ;
    .

<http://id.worldcat.org/fast/1139041> # Supervised learning (Machine learning)
    a schema:Intangible ;
    schema:name "Supervised learning (Machine learning)"@en ;
    .

<http://id.worldcat.org/fast/1893023> # Boosting (Algorithms)
    a schema:Intangible ;
    schema:name "Boosting (Algorithms)"@en ;
    .

<http://site.ebrary.com/lib/interpuertorico/Doc?id=10569012>
    rdfs:comment "An electronic book accessible through the World Wide Web; click to view" ;
    .

<http://viaf.org/viaf/46940747> # Robert E. Schapire
    a schema:Person ;
    schema:familyName "Schapire" ;
    schema:givenName "Robert E." ;
    schema:name "Robert E. Schapire" ;
    .

<http://viaf.org/viaf/63543180> # Yoav Freund
    a schema:Person ;
    schema:familyName "Freund" ;
    schema:givenName "Yoav" ;
    schema:name "Yoav Freund" ;
    .

<http://worldcat.org/isbn/9780262301183>
    a schema:ProductModel ;
    schema:isbn "0262301180" ;
    schema:isbn "9780262301183" ;
    .

<http://www.worldcat.org/oclc/758388404>
    a schema:CreativeWork ;
    rdfs:label "Boosting." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/794669892> ; # Boosting : foundations and algorithms
    .


Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.