zum Inhalt wechseln
Boosting : foundations and algorithms Titelvorschau
SchließenTitelvorschau
Prüfung…

Boosting : foundations and algorithms

Verfasser/in: Robert E Schapire; Yoav Freund
Verlag: Cambridge, MA : MIT Press, ©2012.
Serien: Adaptive computation and machine learning.
Ausgabe/Format   E-Book : Dokument : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Gattung/Form: Electronic books
Physisches Format Print version:
Schapire, Robert E.
Boosting.
Cambridge, MA : MIT Press, c2012
(DLC) 2011038972
(OCoLC)758388404
Medientyp: Dokument, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Robert E Schapire; Yoav Freund
ISBN: 9780262301183 0262301180
OCLC-Nummer: 794669892
Beschreibung: 1 online resource (xv, 526 p.) : ill.
Inhalt: Foundations of machine learning --
Using AdaBoost to minimize training error --
Direct bounds on the generalization error --
The margins explanation for boosting's effectiveness --
Game theory, online learning, and boosting --
Loss minimization and generalizations of boosting --
Boosting, convex optimization, and information geometry --
Using confidence-rated weak predictions --
Multiclass classification problems --
Learning to rank --
Attaining the best possible accuracy --
Optimally efficient boosting --
Boosting in continuous time.
Serientitel: Adaptive computation and machine learning.
Verfasserangabe: Robert E. Schapire and Yoav Freund.

Abstract:

A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --

Rezensionen

Redaktionelle Rezension

Nielsen BookData

This excellent book is a mind-stretcher that should be read and reread, even by nonspecialists. Computing Reviews Boosting is, quite simply, one of the best-written books I've read on machine Weiterlesen…

 
Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.

Ähnliche Titel

Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


Primary Entity

<http://www.worldcat.org/oclc/794669892> # Boosting foundations and algorithms
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "794669892" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1032229637#Place/cambridge_ma> ; # Cambridge, MA
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://id.worldcat.org/fast/1893023> ; # Boosting (Algorithms)
    schema:about <http://id.worldcat.org/fast/1139041> ; # Supervised learning (Machine learning)
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> ; # COMPUTERS / Enterprise Applications / Business Intelligence Tools
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> ; # COMPUTERS / Intelligence (AI) & Semantics
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/63543180> ; # Yoav Freund
    schema:copyrightYear "2012" ;
    schema:creator <http://viaf.org/viaf/46940747> ; # Robert E. Schapire
    schema:datePublished "2012" ;
    schema:description "Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time."@en ;
    schema:description "A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1032229637> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> ; # Adaptive computation and machine learning.
    schema:isSimilarTo <http://www.worldcat.org/oclc/758388404> ;
    schema:name "Boosting foundations and algorithms"@en ;
    schema:numberOfPages "526" ;
    schema:productID "794669892" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/794669892#PublicationEvent/cambridge_ma_mit_press_c2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1032229637#Agent/mit_press> ; # MIT Press
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458478> ;
    schema:url <http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267536> ;
    schema:url <http://mitpress.mit.edu/images/products/books/9780262017183-f30.jpg> ;
    schema:url <http://www.books24x7.com/marc.asp?bookid=73652> ;
    schema:url <http://site.ebrary.com/lib/alltitles/Doc?id=10569012> ;
    schema:url <http://www.myilibrary.com?id=365528> ;
    schema:url <http://site.ebrary.com/id/10569012> ;
    schema:workExample <http://worldcat.org/isbn/9780262301183> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/794669892> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> # Adaptive computation and machine learning.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/794669892> ; # Boosting foundations and algorithms
    schema:name "Adaptive computation and machine learning." ;
    schema:name "Adaptive computation and machine learning" ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> # COMPUTERS / Enterprise Applications / Business Intelligence Tools
    a schema:Intangible ;
    schema:name "COMPUTERS / Enterprise Applications / Business Intelligence Tools"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> # COMPUTERS / Intelligence (AI) & Semantics
    a schema:Intangible ;
    schema:name "COMPUTERS / Intelligence (AI) & Semantics"@en ;
    .

<http://id.worldcat.org/fast/1139041> # Supervised learning (Machine learning)
    a schema:Intangible ;
    schema:name "Supervised learning (Machine learning)"@en ;
    .

<http://id.worldcat.org/fast/1893023> # Boosting (Algorithms)
    a schema:Intangible ;
    schema:name "Boosting (Algorithms)"@en ;
    .

<http://viaf.org/viaf/46940747> # Robert E. Schapire
    a schema:Person ;
    schema:familyName "Schapire" ;
    schema:givenName "Robert E." ;
    schema:name "Robert E. Schapire" ;
    .

<http://viaf.org/viaf/63543180> # Yoav Freund
    a schema:Person ;
    schema:familyName "Freund" ;
    schema:givenName "Yoav" ;
    schema:name "Yoav Freund" ;
    .

<http://worldcat.org/isbn/9780262301183>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "0262301180" ;
    schema:isbn "9780262301183" ;
    .

<http://www.worldcat.org/oclc/758388404>
    a schema:CreativeWork ;
    rdfs:label "Boosting." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/794669892> ; # Boosting foundations and algorithms
    .


Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.