omitir hasta el contenido
Boosting : foundations and algorithms Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Boosting : foundations and algorithms

Autor: Robert E Schapire; Yoav Freund
Editorial: Cambridge, MA : MIT Press, ©2012.
Serie: Adaptive computation and machine learning.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Formato físico adicional: Print version:
Schapire, Robert E.
Boosting.
Cambridge, MA : MIT Press, c2012
(DLC) 2011038972
(OCoLC)758388404
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Robert E Schapire; Yoav Freund
ISBN: 9780262301183 0262301180
Número OCLC: 794669892
Descripción: 1 online resource (xv, 526 p.) : ill.
Contenido: Foundations of machine learning --
Using AdaBoost to minimize training error --
Direct bounds on the generalization error --
The margins explanation for boosting's effectiveness --
Game theory, online learning, and boosting --
Loss minimization and generalizations of boosting --
Boosting, convex optimization, and information geometry --
Using confidence-rated weak predictions --
Multiclass classification problems --
Learning to rank --
Attaining the best possible accuracy --
Optimally efficient boosting --
Boosting in continuous time.
Título de la serie: Adaptive computation and machine learning.
Responsabilidad: Robert E. Schapire and Yoav Freund.

Resumen:

A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --

Reseñas

Reseñas editoriales

Resumen de la editorial

"This excellent book is a mind-stretcher that should be read and reread, even bynonspecialists." -- Computing Reviews "Boosting is, quite simply, one of the best-written books I've read on machine Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/794669892> # Boosting foundations and algorithms
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "794669892" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1032229637#Place/cambridge_ma> ; # Cambridge, MA
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://id.worldcat.org/fast/1893023> ; # Boosting (Algorithms)
    schema:about <http://id.worldcat.org/fast/1139041> ; # Supervised learning (Machine learning)
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> ; # COMPUTERS / Enterprise Applications / Business Intelligence Tools
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> ; # COMPUTERS / Intelligence (AI) & Semantics
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/63543180> ; # Yoav Freund
    schema:copyrightYear "2012" ;
    schema:creator <http://viaf.org/viaf/46940747> ; # Robert E. Schapire
    schema:datePublished "2012" ;
    schema:description "Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time."@en ;
    schema:description "A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1032229637> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> ; # Adaptive computation and machine learning.
    schema:isSimilarTo <http://www.worldcat.org/oclc/758388404> ;
    schema:name "Boosting foundations and algorithms"@en ;
    schema:numberOfPages "526" ;
    schema:productID "794669892" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/794669892#PublicationEvent/cambridge_ma_mit_press_c2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1032229637#Agent/mit_press> ; # MIT Press
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458478> ;
    schema:url <http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267536> ;
    schema:url <http://mitpress.mit.edu/images/products/books/9780262017183-f30.jpg> ;
    schema:url <http://www.books24x7.com/marc.asp?bookid=73652> ;
    schema:url <http://site.ebrary.com/lib/alltitles/Doc?id=10569012> ;
    schema:url <http://www.myilibrary.com?id=365528> ;
    schema:url <http://site.ebrary.com/id/10569012> ;
    schema:workExample <http://worldcat.org/isbn/9780262301183> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/794669892> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> # Adaptive computation and machine learning.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/794669892> ; # Boosting foundations and algorithms
    schema:name "Adaptive computation and machine learning." ;
    schema:name "Adaptive computation and machine learning" ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> # COMPUTERS / Enterprise Applications / Business Intelligence Tools
    a schema:Intangible ;
    schema:name "COMPUTERS / Enterprise Applications / Business Intelligence Tools"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> # COMPUTERS / Intelligence (AI) & Semantics
    a schema:Intangible ;
    schema:name "COMPUTERS / Intelligence (AI) & Semantics"@en ;
    .

<http://id.worldcat.org/fast/1139041> # Supervised learning (Machine learning)
    a schema:Intangible ;
    schema:name "Supervised learning (Machine learning)"@en ;
    .

<http://id.worldcat.org/fast/1893023> # Boosting (Algorithms)
    a schema:Intangible ;
    schema:name "Boosting (Algorithms)"@en ;
    .

<http://viaf.org/viaf/46940747> # Robert E. Schapire
    a schema:Person ;
    schema:familyName "Schapire" ;
    schema:givenName "Robert E." ;
    schema:name "Robert E. Schapire" ;
    .

<http://viaf.org/viaf/63543180> # Yoav Freund
    a schema:Person ;
    schema:familyName "Freund" ;
    schema:givenName "Yoav" ;
    schema:name "Yoav Freund" ;
    .

<http://worldcat.org/isbn/9780262301183>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "0262301180" ;
    schema:isbn "9780262301183" ;
    .

<http://www.worldcat.org/oclc/758388404>
    a schema:CreativeWork ;
    rdfs:label "Boosting." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/794669892> ; # Boosting foundations and algorithms
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.