aller au contenu
Boosting : foundations and algorithms Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

Boosting : foundations and algorithms

Auteur : Robert E Schapire; Yoav Freund
Éditeur: Cambridge, MA : MIT Press, ©2012.
Collection: Adaptive computation and machine learning.
Édition/format:   Livre électronique : Document : AnglaisVoir toutes les éditions et tous les formats
Base de données:WorldCat
Résumé:
A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by  Lire la suite...
Évaluation:

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire en ligne

Liens vers cet ouvrage

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Genre/forme: Electronic books
Format – détails additionnels: Print version:
Schapire, Robert E.
Boosting.
Cambridge, MA : MIT Press, ©2012
(DLC) 2011038972
(OCoLC)758388404
Type d’ouvrage: Document, Ressource Internet
Type de document: Ressource Internet, Fichier d'ordinateur
Tous les auteurs / collaborateurs: Robert E Schapire; Yoav Freund
ISBN: 9780262301183 0262301180
Numéro OCLC: 794669892
Description: 1 online resource (xv, 526 pages) : illustrations.
Contenu: Foundations of machine learning --
Using AdaBoost to minimize training error --
Direct bounds on the generalization error --
The margins explanation for boosting's effectiveness --
Game theory, online learning, and boosting --
Loss minimization and generalizations of boosting --
Boosting, convex optimization, and information geometry --
Using confidence-rated weak predictions --
Multiclass classification problems --
Learning to rank --
Attaining the best possible accuracy --
Optimally efficient boosting --
Boosting in continuous time.
Titre de collection: Adaptive computation and machine learning.
Responsabilité: Robert E. Schapire and Yoav Freund.

Résumé:

A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --

Critiques

Critiques éditoriales

Synopsis de l’éditeur

This excellent book is a mind-stretcher that should be read and reread, even by nonspecialists. Computing Reviews Boosting is, quite simply, one of the best-written books I've read on machine Lire la suite...

 
Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Marqueurs

Soyez le premier.

Ouvrages semblables

Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


Primary Entity

<http://www.worldcat.org/oclc/794669892> # Boosting : foundations and algorithms
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "794669892" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1032229637#Place/cambridge_ma> ; # Cambridge, MA
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://id.worldcat.org/fast/1893023> ; # Boosting (Algorithms)
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> ; # COMPUTERS--Intelligence (AI) & Semantics
    schema:about <http://id.worldcat.org/fast/1139041> ; # Supervised learning (Machine learning)
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> ; # COMPUTERS--Enterprise Applications--Business Intelligence Tools
    schema:about <http://experiment.worldcat.org/entity/work/data/1032229637#Topic/electronic_books> ; # Electronic books
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/63543180> ; # Yoav Freund
    schema:copyrightYear "2012" ;
    schema:creator <http://viaf.org/viaf/46940747> ; # Robert E. Schapire
    schema:datePublished "2012" ;
    schema:description "A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --"@en ;
    schema:description "Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1032229637> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> ; # Adaptive computation and machine learning.
    schema:isSimilarTo <http://www.worldcat.org/oclc/758388404> ;
    schema:name "Boosting : foundations and algorithms"@en ;
    schema:productID "794669892" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/794669892#PublicationEvent/cambridge_ma_mit_press_2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1032229637#Agent/mit_press> ; # MIT Press
    schema:url <http://www.myilibrary.com?id=365528> ;
    schema:url <http://mitpress.mit.edu/images/products/books/9780262017183-f30.jpg> ;
    schema:url <http://www.books24x7.com/marc.asp?bookid=73652> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=458478> ;
    schema:url <http://ebookcentral.proquest.com/lib/concordiaab-ebooks/detail.action?docID=3339451> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3339451> ;
    schema:url <http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267536> ;
    schema:url <http://0-site.ebrary.com.webpac.lvlspa.org/lib/moravianlibrary/Doc?id=10569012> ;
    schema:url <http://ebookcentral.proquest.com/lib/gprc-ebooks/detail.action?docID=3339451> ;
    schema:url <http://ebookcentral.proquest.com/lib/macewan-ebooks/detail.action?docID=3339451> ;
    schema:url <http://ebookcentral.proquest.com/lib/rdc/detail.action?docID=3339451> ;
    schema:url <http://site.ebrary.com/id/10569012> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e020mna&AN=458478> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458478> ;
    schema:workExample <http://worldcat.org/isbn/9780262301183> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/794669892> ;
    .


Related Entities

<http://ebookcentral.proquest.com/lib/concordiaab-ebooks/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://ebookcentral.proquest.com/lib/gprc-ebooks/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://ebookcentral.proquest.com/lib/macewan-ebooks/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://ebookcentral.proquest.com/lib/rdc/detail.action?docID=3339451>
    rdfs:comment "from Ebook Central Academic Complete" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Series/adaptive_computation_and_machine_learning> # Adaptive computation and machine learning.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/794669892> ; # Boosting : foundations and algorithms
    schema:name "Adaptive computation and machine learning." ;
    schema:name "Adaptive computation and machine learning" ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_enterprise_applications_business_intelligence_tools> # COMPUTERS--Enterprise Applications--Business Intelligence Tools
    a schema:Intangible ;
    schema:name "COMPUTERS--Enterprise Applications--Business Intelligence Tools"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1032229637#Topic/computers_intelligence_ai_&_semantics> # COMPUTERS--Intelligence (AI) & Semantics
    a schema:Intangible ;
    schema:name "COMPUTERS--Intelligence (AI) & Semantics"@en ;
    .

<http://id.worldcat.org/fast/1139041> # Supervised learning (Machine learning)
    a schema:Intangible ;
    schema:name "Supervised learning (Machine learning)"@en ;
    .

<http://id.worldcat.org/fast/1893023> # Boosting (Algorithms)
    a schema:Intangible ;
    schema:name "Boosting (Algorithms)"@en ;
    .

<http://viaf.org/viaf/46940747> # Robert E. Schapire
    a schema:Person ;
    schema:familyName "Schapire" ;
    schema:givenName "Robert E." ;
    schema:name "Robert E. Schapire" ;
    .

<http://viaf.org/viaf/63543180> # Yoav Freund
    a schema:Person ;
    schema:familyName "Freund" ;
    schema:givenName "Yoav" ;
    schema:name "Yoav Freund" ;
    .

<http://worldcat.org/isbn/9780262301183>
    a schema:ProductModel ;
    schema:isbn "0262301180" ;
    schema:isbn "9780262301183" ;
    .

<http://www.worldcat.org/oclc/758388404>
    a schema:CreativeWork ;
    rdfs:label "Boosting." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/794669892> ; # Boosting : foundations and algorithms
    .


Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.