doorgaan naar inhoud
Boosting : foundations and algorithms Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Boosting : foundations and algorithms

Auteur: Robert E Schapire; Yoav Freund
Uitgever: Cambridge, MA : MIT Press, ©2012.
Serie: Adaptive computation and machine learning.
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Aanvullende fysieke materiaalsoort: Print version:
Schapire, Robert E.
Boosting.
Cambridge, MA : MIT Press, c2012
(DLC) 2011038972
(OCoLC)758388404
Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Robert E Schapire; Yoav Freund
ISBN: 9780262301183 0262301180
OCLC-nummer: 794669892
Beschrijving: 1 online resource (xv, 526 p.) : ill.
Inhoud: Foundations of machine learning --
Using AdaBoost to minimize training error --
Direct bounds on the generalization error --
The margins explanation for boosting's effectiveness --
Game theory, online learning, and boosting --
Loss minimization and generalizations of boosting --
Boosting, convex optimization, and information geometry --
Using confidence-rated weak predictions --
Multiclass classification problems --
Learning to rank --
Attaining the best possible accuracy --
Optimally efficient boosting --
Boosting in continuous time.
Serietitel: Adaptive computation and machine learning.
Verantwoordelijkheid: Robert E. Schapire and Yoav Freund.

Fragment:

A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

"This excellent book is a mind-stretcher that should be read and reread, even bynonspecialists." -- Computing Reviews "Boosting is, quite simply, one of the best-written books I've read on machine Meer lezen...

 
Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/794669892>
library:oclcnum"794669892"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2012"
schema:creator
schema:datePublished"2012"
schema:description"Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time."@en
schema:description"A remarkably rich theory has evolved around boosting, with connections to a range of topics including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. --"@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1032229637>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Boosting foundations and algorithms"@en
schema:numberOfPages"526"
schema:publication
schema:publisher
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458478>
schema:url<http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267536>
schema:url<http://www.books24x7.com/marc.asp?bookid=73652>
schema:url<http://site.ebrary.com/lib/alltitles/Doc?id=10569012>
schema:url<http://www.myilibrary.com?id=365528>
schema:url<http://site.ebrary.com/id/10569012>
schema:workExample
wdrs:describedby

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.