skip to content
The boundary-domain integral method for elliptic systems Preview this item
ClosePreview this item
Checking...

The boundary-domain integral method for elliptic systems

Author: Andreas Pomp
Publisher: Berlin ; Heidelberg ; New York [etc] : Springer, cop. 1998.
Series: Lecture notes in mathematics, 1683.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

This monograph gives a description of all algorithmic steps and a mathematical foundation for a special numerical method, namely the boundary-domain integral method (BDIM).

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Andreas Pomp
ISBN: 3540641637 9783540641636
OCLC Number: 490529704
Description: 1 vol. (XVI-163 p.) : ill. ; 24 cm.
Contents: Pseudohomogeneous distributions.- Levi functions for elliptic systems of partial differential equations.- Systems of integral equations, generated by Levi functions.- The differential equations of the DV model.- Levi functions for the shell equations.- The system of integral equations and its numerical solution.- An example: Katenoid shell under torsion.
Series Title: Lecture notes in mathematics, 1683.
Responsibility: Andreas Pomp.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/490529704> # The boundary-domain integral method for elliptic systems
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "490529704" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/42582063#Place/new_york_etc> ; # New York etc
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/42582063#Place/heidelberg> ; # Heidelberg
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/42582063#Place/berlin> ; # Berlin
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/equations_differentielles_elliptiques> ; # Équations différentielles elliptiques
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/coques_ingenierie_modeles_mathematiques> ; # Coques (ingénierie)--Modèles mathématiques
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/elements_frontieres_methode_des> ; # Éléments-frontières, Méthode des
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/equations_integrales> ; # Équations intégrales
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/systeme_elliptique> ; # système elliptique
   schema:about <http://id.worldcat.org/fast/837093> ; # Boundary element methods
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/edp> ; # EDP
   schema:about <http://id.worldcat.org/fast/1115741> ; # Shells (Engineering)--Mathematical models
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/coque> ; # coque
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/shells_engineering_mathematical_models> ; # Shells (Engineering)--Mathematical models
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/equations_integrales_de_frontiere_methodes_des> ; # Équations intégrales de frontière, Méthodes des
   schema:about <http://experiment.worldcat.org/entity/work/data/42582063#Topic/analyse_numerique> ; # Analyse numérique
   schema:about <http://dewey.info/class/624.17762015118/e21/> ;
   schema:about <http://id.worldcat.org/fast/893458> ; # Differential equations, Elliptic
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "1998" ;
   schema:copyrightYear "op." ;
   schema:creator <http://viaf.org/viaf/115962350> ; # Andreas Pomp
   schema:datePublished "1998" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/42582063> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://worldcat.org/issn/0075-8434> ; # Lecture notes in mathematics ;
   schema:name "The boundary-domain integral method for elliptic systems" ;
   schema:productID "490529704" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/490529704#PublicationEvent/berlin_heidelberg_new_york_etc_springer_cop_1998> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/42582063#Agent/springer> ; # Springer
   schema:workExample <http://worldcat.org/isbn/9783540641636> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GB9827048> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/490529704> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/analyse_numerique> # Analyse numérique
    a schema:Intangible ;
   schema:name "Analyse numérique" ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/coques_ingenierie_modeles_mathematiques> # Coques (ingénierie)--Modèles mathématiques
    a schema:Intangible ;
   schema:name "Coques (ingénierie)--Modèles mathématiques" ;
   schema:name "Coques (Ingénierie)--Modèles mathématiques"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/elements_frontieres_methode_des> # Éléments-frontières, Méthode des
    a schema:Intangible ;
   schema:name "Éléments-frontières, Méthode des" ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/equations_differentielles_elliptiques> # Équations différentielles elliptiques
    a schema:Intangible ;
   schema:name "Équations différentielles elliptiques" ;
   schema:name "Équations différentielles elliptiques"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/equations_integrales> # Équations intégrales
    a schema:Intangible ;
   schema:name "Équations intégrales" ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/equations_integrales_de_frontiere_methodes_des> # Équations intégrales de frontière, Méthodes des
    a schema:Intangible ;
   schema:name "Équations intégrales de frontière, Méthodes des"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/shells_engineering_mathematical_models> # Shells (Engineering)--Mathematical models
    a schema:Intangible ;
   schema:hasPart <http://id.loc.gov/authorities/subjects/sh85121307> ;
   schema:name "Shells (Engineering)--Mathematical models" ;
    .

<http://experiment.worldcat.org/entity/work/data/42582063#Topic/systeme_elliptique> # système elliptique
    a schema:Intangible ;
   schema:name "système elliptique" ;
    .

<http://id.worldcat.org/fast/1115741> # Shells (Engineering)--Mathematical models
    a schema:Intangible ;
   schema:name "Shells (Engineering)--Mathematical models" ;
    .

<http://id.worldcat.org/fast/837093> # Boundary element methods
    a schema:Intangible ;
   schema:name "Boundary element methods" ;
    .

<http://id.worldcat.org/fast/893458> # Differential equations, Elliptic
    a schema:Intangible ;
   schema:name "Differential equations, Elliptic" ;
    .

<http://viaf.org/viaf/115962350> # Andreas Pomp
    a schema:Person ;
   schema:birthDate "1952" ;
   schema:deathDate "," ;
   schema:familyName "Pomp" ;
   schema:givenName "Andreas" ;
   schema:name "Andreas Pomp" ;
    .

<http://worldcat.org/isbn/9783540641636>
    a schema:ProductModel ;
   schema:isbn "3540641637" ;
   schema:isbn "9783540641636" ;
    .

<http://worldcat.org/issn/0075-8434> # Lecture notes in mathematics ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/490529704> ; # The boundary-domain integral method for elliptic systems
   schema:issn "0075-8434" ;
   schema:name "Lecture notes in mathematics ;" ;
   schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.