skip to content
Boundary stabilization of thin plates Preview this item
ClosePreview this item
Checking...

Boundary stabilization of thin plates

Author: J Lagnese; Society for Industrial and Applied Mathematics.
Publisher: Philadelphia, Pa. : Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1989.
Series: SIAM studies in applied mathematics, 10.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Presents one of the main directions of research in the area of design and analysis of feedback stabilizers for distributed parameter systems in structural dynamics. Important progress has been made in this area, driven, to a large extent, by problems in modern structural engineering that require active feedback control mechanisms to stabilize structures which may possess only very weak natural damping. Much of the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
(DLC) 89011316
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: J Lagnese; Society for Industrial and Applied Mathematics.
ISBN: 9781611970821 1611970822
OCLC Number: 718622320
Reproduction Notes: Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2011. MiAaHDL
Description: 1 online resource (viii, 176 pages) : illustrations, digital file.
Details: Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Contents: Preface --
Chapter 1. Introduction: Orientation; Background; Connection with exact controllability --
Chapter 2. Thin plate models: Kirchhoff model; Mindlin-Timoshenko model; Von Karman model; A viscoelastic plate model; A linear thermoelastic plate model --
Chapter 3. Boundary feedback stabilization of Mindlin-Timoshenko plates: Orientation: existence, uniqueness, and properties of solutions; Uniform asymptotic stability of solutions --
Chapter 4. Limits of the Mindlin-Timoshenko system and asymptotic stability of the limit systems: orientation; The limit of the M-T System as KÊ 0+; The limit of the M-T System as K ; Study of the Kirchhoff system; uniform asymptotic stability of solutions; Limit of the Kirchhoff System as 0+ --
Chapter 5. Uniform stabilization in some nonlinear plate problems: uniform stabilization of the Kirchhoff system by nonlinear feedback; Uniform asymptotic energy estimates for a von Karman plate --
Chapter 6. Boundary feedback stabilization of Kirchhoff plates subject to weak viscoelastic damping: Formulation of the boundary value problem; Existence, uniqueness, and properties of solutions; Asymptotic energy estimates --
Chapter 7. Uniform asymptotic energy estimates for thermoelastic plates: Orientation; existence, uniqueness, regularity, and strong stability; Uniform asymptotic energy estimates --
Bibliography --
Index.
Series Title: SIAM studies in applied mathematics, 10.
Responsibility: John E. Lagnese.
More information:

Abstract:

Presents one of the main directions of research in the area of design and analysis of feedback stabilizers for distributed parameter systems in structural dynamics. Important progress has been made in this area, driven, to a large extent, by problems in modern structural engineering that require active feedback control mechanisms to stabilize structures which may possess only very weak natural damping. Much of the progress is due to the development of new methods to analyze the stabilizing effects of specific feedback mechanisms. Boundary Stabilization of Thin Plates provides a comprehensive and unified treatment of asymptotic stability of a thin plate when appropriate stabilizing feedback mechanisms acting through forces and moments are introduced along a part of the edge of the plate. In particular, primary emphasis is placed on the derivation of explicit estimates of the asymptotic decay rate of the energy of the plate that are uniform with respect to the initial energy of the plate, that is, on uniform stabilization results. The method that is systematically employed throughout this book is the use of multipliers as the basis for the derivation of a priori asymptotic estimates on plate energy. It is only in recent years that the power of the multiplier method in the context of boundary stabilization of hyperbolic partial differential equations came to be realized. One of the more surprising applications of the method appears in Chapter 5, where it is used to derive asymptotic decay rates for the energy of the nonlinear von Karman plate, even though the technique is ostensibly a linear one.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/718622320> # Boundary stabilization of thin plates
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
   library:oclcnum "718622320" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/pau> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/21822756#Place/philadelphia_pa> ; # Philadelphia, Pa.
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Thing/viscoelastic_plates> ; # Viscoelastic plates
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/stabilite_asymptotique> ; # stabilité asymptotique
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/coque_mince> ; # coque mince
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/energie> ; # énergie
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/modele_kirchhoff> ; # modèle Kirchhoff
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Thing/thin_plates> ; # Thin plates
   schema:about <http://dewey.info/class/531.382/e20/> ;
   schema:about <http://id.worldcat.org/fast/893484> ; # Differential equations, Partial
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/edp> ; # EDP
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Thing/thermoelastic_plates> ; # Thermoelastic plates
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/modele_mindlin_timoshenko> ; # modèle Mindlin-Timoshenko
   schema:about <http://id.worldcat.org/fast/904190> ; # Elastic plates and shells
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/elasticite> ; # élasticité
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/coque_elastique> ; # coque élastique
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Thing/asymptotics> ; # Asymptotics
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Thing/uniform_stabilization> ; # Uniform stabilization
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/equations_aux_derivees_partielles> ; # Equations aux dérivées partielles
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/applied_mathematics> ; # Applied Mathematics
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/plaque_mince> ; # plaque mince
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/comportement_asymptotique> ; # comportement asymptotique
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/engineering_&_applied_sciences> ; # Engineering & Applied Sciences
   schema:about <http://experiment.worldcat.org/entity/work/data/21822756#Topic/plaques_et_coques_elastiques> ; # Plaques et coques élastiques
   schema:bookFormat schema:EBook ;
   schema:contributor <http://viaf.org/viaf/138967442> ; # Society for Industrial and Applied Mathematics.
   schema:creator <http://viaf.org/viaf/95196910> ; # J. Lagnese
   schema:datePublished "1989" ;
   schema:description "Presents one of the main directions of research in the area of design and analysis of feedback stabilizers for distributed parameter systems in structural dynamics. Important progress has been made in this area, driven, to a large extent, by problems in modern structural engineering that require active feedback control mechanisms to stabilize structures which may possess only very weak natural damping. Much of the progress is due to the development of new methods to analyze the stabilizing effects of specific feedback mechanisms. Boundary Stabilization of Thin Plates provides a comprehensive and unified treatment of asymptotic stability of a thin plate when appropriate stabilizing feedback mechanisms acting through forces and moments are introduced along a part of the edge of the plate. In particular, primary emphasis is placed on the derivation of explicit estimates of the asymptotic decay rate of the energy of the plate that are uniform with respect to the initial energy of the plate, that is, on uniform stabilization results. The method that is systematically employed throughout this book is the use of multipliers as the basis for the derivation of a priori asymptotic estimates on plate energy. It is only in recent years that the power of the multiplier method in the context of boundary stabilization of hyperbolic partial differential equations came to be realized. One of the more surprising applications of the method appears in Chapter 5, where it is used to derive asymptotic decay rates for the energy of the nonlinear von Karman plate, even though the technique is ostensibly a linear one."@en ;
   schema:description "Preface -- Chapter 1. Introduction: Orientation; Background; Connection with exact controllability -- Chapter 2. Thin plate models: Kirchhoff model; Mindlin-Timoshenko model; Von Karman model; A viscoelastic plate model; A linear thermoelastic plate model -- Chapter 3. Boundary feedback stabilization of Mindlin-Timoshenko plates: Orientation: existence, uniqueness, and properties of solutions; Uniform asymptotic stability of solutions -- Chapter 4. Limits of the Mindlin-Timoshenko system and asymptotic stability of the limit systems: orientation; The limit of the M-T System as KÊ 0+; The limit of the M-T System as K ; Study of the Kirchhoff system; uniform asymptotic stability of solutions; Limit of the Kirchhoff System as 0+ -- Chapter 5. Uniform stabilization in some nonlinear plate problems: uniform stabilization of the Kirchhoff system by nonlinear feedback; Uniform asymptotic energy estimates for a von Karman plate -- Chapter 6. Boundary feedback stabilization of Kirchhoff plates subject to weak viscoelastic damping: Formulation of the boundary value problem; Existence, uniqueness, and properties of solutions; Asymptotic energy estimates -- Chapter 7. Uniform asymptotic energy estimates for thermoelastic plates: Orientation; existence, uniqueness, regularity, and strong stability; Uniform asymptotic energy estimates -- Bibliography -- Index."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/21822756> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/21822756#Series/siam_studies_in_applied_mathematics> ; # SIAM studies in applied mathematics ;
   schema:isSimilarTo <http://worldcat.org/entity/work/data/21822756#CreativeWork/> ;
   schema:name "Boundary stabilization of thin plates"@en ;
   schema:productID "718622320" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/718622320#PublicationEvent/philadelphia_pa_society_for_industrial_and_applied_mathematics_siam_3600_market_street_floor_6_philadelphia_pa_19104_1989> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/21822756#Agent/society_for_industrial_and_applied_mathematics_siam_3600_market_street_floor_6_philadelphia_pa_19104> ; # Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
   schema:url <http://dx.doi.org/10.1137/1.9781611970821> ;
   schema:url <http://catalog.hathitrust.org/api/volumes/oclc/19741586.html> ;
   schema:url <http://www.igpublish.com/siam-ebook/Book.nsp?cid_BOOKCODE=DEMOSIAMB0000209&cid_BOOKPAGE=1> ;
   schema:url <http://epubs.siam.org/doi/book/10.1137/1.9781611970821> ;
   schema:workExample <http://worldcat.org/isbn/9781611970821> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/718622320> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/21822756#Agent/society_for_industrial_and_applied_mathematics_siam_3600_market_street_floor_6_philadelphia_pa_19104> # Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
    a bgn:Agent ;
   schema:name "Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)" ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Place/philadelphia_pa> # Philadelphia, Pa.
    a schema:Place ;
   schema:name "Philadelphia, Pa." ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Series/siam_studies_in_applied_mathematics> # SIAM studies in applied mathematics ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/718622320> ; # Boundary stabilization of thin plates
   schema:name "SIAM studies in applied mathematics ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Thing/thermoelastic_plates> # Thermoelastic plates
    a schema:Thing ;
   schema:name "Thermoelastic plates" ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Thing/uniform_stabilization> # Uniform stabilization
    a schema:Thing ;
   schema:name "Uniform stabilization" ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Thing/viscoelastic_plates> # Viscoelastic plates
    a schema:Thing ;
   schema:name "Viscoelastic plates" ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/applied_mathematics> # Applied Mathematics
    a schema:Intangible ;
   schema:name "Applied Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/comportement_asymptotique> # comportement asymptotique
    a schema:Intangible ;
   schema:name "comportement asymptotique"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/engineering_&_applied_sciences> # Engineering & Applied Sciences
    a schema:Intangible ;
   schema:name "Engineering & Applied Sciences"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/equations_aux_derivees_partielles> # Equations aux dérivées partielles
    a schema:Intangible ;
   schema:name "Equations aux dérivées partielles"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/modele_mindlin_timoshenko> # modèle Mindlin-Timoshenko
    a schema:Intangible ;
   schema:name "modèle Mindlin-Timoshenko"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/plaques_et_coques_elastiques> # Plaques et coques élastiques
    a schema:Intangible ;
   schema:name "Plaques et coques élastiques"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21822756#Topic/stabilite_asymptotique> # stabilité asymptotique
    a schema:Intangible ;
   schema:name "stabilité asymptotique"@en ;
    .

<http://id.worldcat.org/fast/893484> # Differential equations, Partial
    a schema:Intangible ;
   schema:name "Differential equations, Partial"@en ;
    .

<http://id.worldcat.org/fast/904190> # Elastic plates and shells
    a schema:Intangible ;
   schema:name "Elastic plates and shells"@en ;
    .

<http://viaf.org/viaf/138967442> # Society for Industrial and Applied Mathematics.
    a schema:Organization ;
   schema:name "Society for Industrial and Applied Mathematics." ;
    .

<http://viaf.org/viaf/95196910> # J. Lagnese
    a schema:Person ;
   schema:familyName "Lagnese" ;
   schema:givenName "J." ;
   schema:name "J. Lagnese" ;
    .

<http://worldcat.org/isbn/9781611970821>
    a schema:ProductModel ;
   schema:isbn "1611970822" ;
   schema:isbn "9781611970821" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.