aller au contenu
Brownian dynamics at boundaries and interfaces : in physics, chemistry, and biology Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

Brownian dynamics at boundaries and interfaces : in physics, chemistry, and biology

Auteur : Zeev Schuss
Éditeur : New York : Springer, [2013] ©2013
Collection : Applied mathematical sciences (Springer-Verlag New York Inc.), volume 186.
Édition/format :   Livre électronique : Document : AnglaisVoir toutes les éditions et les formats
Base de données :WorldCat
Résumé :
Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential  Lire la suite...
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire en ligne

Liens vers cet ouvrage

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Genre/forme : Electronic books
Type d’ouvrage : Document, Ressource Internet
Format : Ressource Internet, Fichier informatique
Tous les auteurs / collaborateurs : Zeev Schuss
ISBN : 9781461476870 1461476879
Numéro OCLC : 858924139
Description : 1 online resource (xx, 322 pages) : illustrations (some color)
Contenu : The mathematical Brownian motion --
Euler simulation of Ito SDEs --
Simulation of the overdamped Langevin equation --
The first passage time of a diffusion process --
Chemical reaction in microdomains --
The stochastic separatrix --
Narrow escape in R² --
Narrow escape in R³.
Titre de collection : Applied mathematical sciences (Springer-Verlag New York Inc.), volume 186.
Responsabilité : Zeev Schuss.

Résumé :

Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein's and Langevin's theories of Brownian motion could predict. This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit solution of a series of complex problems that have immediate applications. It is aimed at applied mathematicians, physicists, theoretical chemists, and physiologists who are interested in modeling, analysis, and simulation of micro devices of microbiology. The book contains exercises and worked out examples throughout.

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.
Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/858924139>
library:oclcnum"858924139"
library:placeOfPublication
owl:sameAs<info:oclcnum/858924139>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2013"
schema:description"Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein's and Langevin's theories of Brownian motion could predict. This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit solution of a series of complex problems that have immediate applications. It is aimed at applied mathematicians, physicists, theoretical chemists, and physiologists who are interested in modeling, analysis, and simulation of micro devices of microbiology. The book contains exercises and worked out examples throughout."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1673229973>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Brownian dynamics at boundaries and interfaces : in physics, chemistry, and biology"@en
schema:url
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.