skip to content
Carbon nanomaterials for gas adsorption Preview this item
ClosePreview this item
Checking...

Carbon nanomaterials for gas adsorption

Author: M L Terranova; Silvia Orlanducci; Marco Rossi, Ph. D.
Publisher: Singapore : Pan Stanford Pub., ©2013.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: M L Terranova; Silvia Orlanducci; Marco Rossi, Ph. D.
ISBN: 9789814316439 9814316431 9789814364195 9814364193
OCLC Number: 826026706
Description: xv, 478, [4] p. of plates : ill. (some col.) ; 24 cm.
Contents: Machine generated contents note: 1.Techniques for the Measurement of Gas Adsorption by Carbon Nanostructures / D. P. Broom --
1.1.Introduction --
1.2.Gas Sorption Measurement Techniques --
1.2.1.Gravimetric Techniques --
1.2.2.Volumetric Techniques --
1.2.3.Temperature-Programmed Desorption --
1.3.Experimental Methodology --
1.3.1.Sample Degassing or Activation --
1.3.2.Thermal Equilibration --
1.3.3.Gas Dosing --
1.3.4.Gas Removal --
1.3.5.Signal Calibration --
1.4.Excess and Absolute Adsorption --
1.5.Potential Error Sources --
1.5.1.Calibration --
1.5.2.Temperature Measurement and Control --
1.5.3.Pressure Measurement --
1.5.4.Sample Size Considerations --
1.5.5.Sample Purity --
1.5.6.Sample Density and Volume --
1.5.7.Gas Purity --
1.5.8.Sample Degassing --
1.5.9.Gas Compressibility --
1.5.10.Buoyancy Effect Corrections --
1.5.11.Dead Volume Corrections --
1.5.12.Accumulative Errors --
1.5.13.Leaks --
1.6.Discussion --
1.7.Conclusion --
2.Physical and Chemical Interactions of Hydrogen with Carbonaceous Nanostructures (An Analytical Study-Indirect Experiment) / Yury S. Nechaev --
2.1.Introduction --
2.2.Part I-Nature and Characteristics of Hydrogen Interactions with Carbonaceous Nanomaterials --
2.2.1.Open Questions Concerning the Nature, Mechanisms, and Characteristics of Hydrogen Sorption by Carbon Nanostructures --
2.2.2.Hydrogen Chemisorption in Graphite and Gelated Carbon Nanostructures --
2.2.2.1.Methodological Aspects --
2.2.2.2.Dissociative Chemisorption of Hydrogen --
2.2.2.3.Dissociative-Associative Chemisorption of Hydrogen: A New Concept --
2.2.2.4.Characteristics and Some Manifestations of Chemisorptions Processes I-IV --
2.2.3.Some Aspects of Determining Sorption Characteristics from the Temperature-Programmed Desorption Spectra: Identifying the Nature of Sorption --
2.2.4.Use of Novel Approaches in the Sorption Data Analysis --
2.2.4.1.Method for Determining the Fraction of Surface Carbon Atoms and Active Sorption Centers in Single-Wall Nanotubes: Sorption Monolayer Model --
2.2.4.2.Manifestation of Multilayer Physical Adsorption Initiated by Monolayer Chemisorption in the Single-Wall Nanotubes --
2.2.4.3.Physical Adsorption and Chemisorption in Single-Wall Nanotubes and GNFs Saturated with Hydrogen at 9 GPA --
2.2.4.4.Polylayer Physical Adsorption in GNFs Initiated by Monolayer Chemisorption --
2.2.5.Conclusion --
2.3.Part II-On Some Experimental Proofs of the Hydrogen Multilayer Intercalation with Carbonaceous Nanostructures: The Importance of Supersdsorbent Development for Fuel-Cell-Powered Vehicles --
2.3.1.Introduction --
2.3.2.On the Specific Intercalation of Atomic Hydrogen into Graphene Layers --
2.3.3.On the Hydrogen Intercalation vs. Chemisorption Mechanisms: Spillover Enhancement of the Sorption Capacity of Carbonaceous Nanomaterials with Metals-Catalyst Nanoparticles --
2.3.4.On the Hydrogen Intercalation (Multilayer Physical Adsorption) in GNFs and SWNT Bundles Initiated by Monolayer Chemisorptions --
2.3.5.Conclusion --
3.Hydrogen Storage in Carbon Aerogels / D. A. Sheppard --
3.1.Introduction --
3.2.Fundamentals of Adsorption and Characterizations --
3.2.1.Fundamentals of Absorption --
3.2.1.1.The Enthalpy of Adsorption --
3.2.1.2.Isosteric Enthalpy of Adsorption --
3.2.2.Characterizations Techniques --
3.3.Carbon Aerogels --
3.3.1.Synthesis and Characterization of CAs --
3.3.2.Syntheses and Characterization of Catalyzed CAs --
3.3.2.1.CAs Catalyzed by Acetic Acid --
3.3.2.2.CAs Catalyzed by Potassium Hydrate --
3.4.Metal-Doped Carbon Aerogels --
3.5.Conclusions and Outlook --
4.Gas Adsorption by Fullerenes and Polyhedral Multi-Walled Carbon Nanostructures / E. N. Sosnov --
4.1.Introduction --
4.2.Experimental Results --
4.3.Discussion --
4.4.Conclusions --
5.Structural and Electronic Properties of Hydrogenated Graphene / Hideaki Kasai --
5.1.Introduction --
5.2.The H Atom and Graphene --
5.3.Hydrogen Molecule Dissociative Adsorption --
5.4.Hydrogen Clustering on Graphene --
5.5.Effects of Adsorbed Hydrogen on the Electronic States of Graphene --
5.6.Graphene Two-Face Hydrogenation and Saturation --
5.7.Summary and Concluding Remarks --
6.Gas Desorption from Detonation Nanodiamonds During Temperature-Programmed Pyrolysis / A. P. Koscheev --
6.1.Introduction --
6.2.A Short Survey of Applications of Thermal Desorption Mass Spectrometry to the Study of the Surface of Diamond Materials --
6.3.Results of the Studies of Detonation Nanodiamonds of Different Types --
6.3.1.Objects and Methods --
6.3.2.Structure, Chemical Composition and Thermal Stability of Various UDD --
6.3.3.FTIR Spectroscopy of UDD of Different Types --
6.3.4.Main Features of Thermal Desorption of Gases from UDD --
6.3.5.Influence of Additional Acid Treatment on the Surface Chemistry of Nanodiamonds of Different Types --
6.3.6.Surface Properties of Nanodiamonds Extracted from Detonation Carbon Soot of Different Types --
6.3.7.Modification of Nanodiamond Surface by Thermal Oxidation --
6.3.8.TDMS of Gases Released from UDD under High Temperature Pyrolysis: Implication to the Meteoritic Nanodiamonds --
6.4.Conclusion --
7.Modeling Gas Adsorption on Carbon Nanotubes / Amanda S. Barnard --
7.1.Introduction --
7.2.Computational Modeling --
7.2.1.Adsorption and Rehybridization on Surfaces --
7.2.2.Adsorption and Rehybridization on Carbon Nanotubes --
7.3.Multiscale Model --
7.3.1.CNT Cohesive Energy --
7.3.2.Energy of Adsorbates --
7.3.3.Rehybridization Energy --
7.3.4.Curvature Dependent Strain Energy --
7.3.5.Thermodynamic Expansion --
7.4.Parameterization --
7.4.1.Gas Coverage and Patterning --
7.5.Modeling Carbon Nanotubes in Air --
7.5.1.Atmospheric Gases --
7.5.2.Humid Air --
7.6.Conclusion --
8.Atomistic Simulation of Gas Adsorption in Carbon Nanostructures / F. Gala --
8.1.Introduction --
8.2.Nanostructured Carbon Allotropes --
8.3.Theoretical Methods --
8.3.1.Density Functional Theory Based ab initio Calculations --
8.3.2.Hartree-Fock Based Quantum Chemistry ab initio Techniques --
8.3.3.Monte Carlo Sampling Techniques in the Grand Canonical Ensemble --
8.4.Gas Physical Adsorption in Carbon Nanostructures --
8.4.1.Hydrogen Physical Adsorption in Carbon Nanostructures --
8.4.1.1.CNTs --
8.4.1.2.Activated and Microporous Carbons --
8.4.1.3.Other Carbonaceous Structures --
8.4.2.Gas Physical Adsorption in Carbon Nanostructures --
8.4.2.1.Methane Physical Adsorption in Carbon Nanostructures --
8.4.2.2.Physical Adsorption of Other Gaseous Species in Carbon Nanostructures --
8.5.Gas Chemisorption in Carbonaceous Nanostructures --
8.5.1.Hydrogen Chemisorption in Carbonaceous Nanostructures --
8.5.1.1.Graphene --
8.5.1.2.Fullerenes --
8.5.1.3.Carbon Nanotubes --
8.5.2.Gas Chemisorption in Carbon Nanostructures for Sensoring --
8.5.2.1.Graphene-Based Nanostructures --
8.5.2.2.CNTs --
8.6.Conclusions --
9.Carbon Nanotubes for Gas Sensing Applications: Principles and Transducers / Michele Penza --
9.1.Introduction --
9.2.Properties of Carbon Nanotubes --
9.3.Fabrication of Carbon Nanotubes --
9.3.1.Arc Discharge --
9.3.2.Laser Ablation --
9.3.3.Chemical Vapor Deposition --
9.3.4.Other Methods of CNTs Synthesis --
9.4.Gas Sensors Based on Carbon Nanotubes --
9.4.1.Pristine Carbon Nanotubes --
9.4.2.Modified CNTs --
9.4.3.Purified CNTs --
9.4.4.Functionalized CNTs --
9.5.Transducers Using Carbon Nanotubes --
9.5.1.Chemiresistors --
9.5.2.FETs --
9.5.3.Electrochemical Sensors --
9.5.4.SAW and Piezoelectric Devices --
9.5.5.Other Transducers --
9.6.Comparative Analysis of CNT Gas Sensors --
9.7.Challenges and Future Perspectives --
9.8.Conclusion --
9.9.Acknowledgment.
Responsibility: edited by Maria L. Terranova, Silvia Orlanducci, Marco Rossi.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (1)

View most popular tags as: tag list | tag cloud

Similar Items

Related Subjects:(3)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/826026706>
library:oclcnum"826026706"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/826026706>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:datePublished"2013"
schema:description"Machine generated contents note: 1.Techniques for the Measurement of Gas Adsorption by Carbon Nanostructures / D. P. Broom -- 1.1.Introduction -- 1.2.Gas Sorption Measurement Techniques -- 1.2.1.Gravimetric Techniques -- 1.2.2.Volumetric Techniques -- 1.2.3.Temperature-Programmed Desorption -- 1.3.Experimental Methodology -- 1.3.1.Sample Degassing or Activation -- 1.3.2.Thermal Equilibration -- 1.3.3.Gas Dosing -- 1.3.4.Gas Removal -- 1.3.5.Signal Calibration -- 1.4.Excess and Absolute Adsorption -- 1.5.Potential Error Sources -- 1.5.1.Calibration -- 1.5.2.Temperature Measurement and Control -- 1.5.3.Pressure Measurement -- 1.5.4.Sample Size Considerations -- 1.5.5.Sample Purity -- 1.5.6.Sample Density and Volume -- 1.5.7.Gas Purity -- 1.5.8.Sample Degassing -- 1.5.9.Gas Compressibility -- 1.5.10.Buoyancy Effect Corrections -- 1.5.11.Dead Volume Corrections -- 1.5.12.Accumulative Errors -- 1.5.13.Leaks -- 1.6.Discussion -- 1.7.Conclusion -- 2.Physical and Chemical Interactions of Hydrogen with Carbonaceous Nanostructures (An Analytical Study-Indirect Experiment) / Yury S. Nechaev -- 2.1.Introduction -- 2.2.Part I-Nature and Characteristics of Hydrogen Interactions with Carbonaceous Nanomaterials -- 2.2.1.Open Questions Concerning the Nature, Mechanisms, and Characteristics of Hydrogen Sorption by Carbon Nanostructures -- 2.2.2.Hydrogen Chemisorption in Graphite and Gelated Carbon Nanostructures -- 2.2.2.1.Methodological Aspects -- 2.2.2.2.Dissociative Chemisorption of Hydrogen -- 2.2.2.3.Dissociative-Associative Chemisorption of Hydrogen: A New Concept -- 2.2.2.4.Characteristics and Some Manifestations of Chemisorptions Processes I-IV -- 2.2.3.Some Aspects of Determining Sorption Characteristics from the Temperature-Programmed Desorption Spectra: Identifying the Nature of Sorption -- 2.2.4.Use of Novel Approaches in the Sorption Data Analysis -- 2.2.4.1.Method for Determining the Fraction of Surface Carbon Atoms and Active Sorption Centers in Single-Wall Nanotubes: Sorption Monolayer Model -- 2.2.4.2.Manifestation of Multilayer Physical Adsorption Initiated by Monolayer Chemisorption in the Single-Wall Nanotubes -- 2.2.4.3.Physical Adsorption and Chemisorption in Single-Wall Nanotubes and GNFs Saturated with Hydrogen at 9 GPA -- 2.2.4.4.Polylayer Physical Adsorption in GNFs Initiated by Monolayer Chemisorption -- 2.2.5.Conclusion -- 2.3.Part II-On Some Experimental Proofs of the Hydrogen Multilayer Intercalation with Carbonaceous Nanostructures: The Importance of Supersdsorbent Development for Fuel-Cell-Powered Vehicles -- 2.3.1.Introduction -- 2.3.2.On the Specific Intercalation of Atomic Hydrogen into Graphene Layers -- 2.3.3.On the Hydrogen Intercalation vs. Chemisorption Mechanisms: Spillover Enhancement of the Sorption Capacity of Carbonaceous Nanomaterials with Metals-Catalyst Nanoparticles -- 2.3.4.On the Hydrogen Intercalation (Multilayer Physical Adsorption) in GNFs and SWNT Bundles Initiated by Monolayer Chemisorptions -- 2.3.5.Conclusion -- 3.Hydrogen Storage in Carbon Aerogels / D. A. Sheppard -- 3.1.Introduction -- 3.2.Fundamentals of Adsorption and Characterizations -- 3.2.1.Fundamentals of Absorption -- 3.2.1.1.The Enthalpy of Adsorption -- 3.2.1.2.Isosteric Enthalpy of Adsorption -- 3.2.2.Characterizations Techniques -- 3.3.Carbon Aerogels -- 3.3.1.Synthesis and Characterization of CAs -- 3.3.2.Syntheses and Characterization of Catalyzed CAs -- 3.3.2.1.CAs Catalyzed by Acetic Acid -- 3.3.2.2.CAs Catalyzed by Potassium Hydrate -- 3.4.Metal-Doped Carbon Aerogels -- 3.5.Conclusions and Outlook -- 4.Gas Adsorption by Fullerenes and Polyhedral Multi-Walled Carbon Nanostructures / E. N. Sosnov -- 4.1.Introduction -- 4.2.Experimental Results -- 4.3.Discussion -- 4.4.Conclusions -- 5.Structural and Electronic Properties of Hydrogenated Graphene / Hideaki Kasai -- 5.1.Introduction -- 5.2.The H Atom and Graphene -- 5.3.Hydrogen Molecule Dissociative Adsorption -- 5.4.Hydrogen Clustering on Graphene -- 5.5.Effects of Adsorbed Hydrogen on the Electronic States of Graphene -- 5.6.Graphene Two-Face Hydrogenation and Saturation -- 5.7.Summary and Concluding Remarks -- 6.Gas Desorption from Detonation Nanodiamonds During Temperature-Programmed Pyrolysis / A. P. Koscheev -- 6.1.Introduction -- 6.2.A Short Survey of Applications of Thermal Desorption Mass Spectrometry to the Study of the Surface of Diamond Materials -- 6.3.Results of the Studies of Detonation Nanodiamonds of Different Types -- 6.3.1.Objects and Methods -- 6.3.2.Structure, Chemical Composition and Thermal Stability of Various UDD -- 6.3.3.FTIR Spectroscopy of UDD of Different Types -- 6.3.4.Main Features of Thermal Desorption of Gases from UDD -- 6.3.5.Influence of Additional Acid Treatment on the Surface Chemistry of Nanodiamonds of Different Types -- 6.3.6.Surface Properties of Nanodiamonds Extracted from Detonation Carbon Soot of Different Types -- 6.3.7.Modification of Nanodiamond Surface by Thermal Oxidation -- 6.3.8.TDMS of Gases Released from UDD under High Temperature Pyrolysis: Implication to the Meteoritic Nanodiamonds -- 6.4.Conclusion -- 7.Modeling Gas Adsorption on Carbon Nanotubes / Amanda S. Barnard -- 7.1.Introduction -- 7.2.Computational Modeling -- 7.2.1.Adsorption and Rehybridization on Surfaces -- 7.2.2.Adsorption and Rehybridization on Carbon Nanotubes -- 7.3.Multiscale Model -- 7.3.1.CNT Cohesive Energy -- 7.3.2.Energy of Adsorbates -- 7.3.3.Rehybridization Energy -- 7.3.4.Curvature Dependent Strain Energy -- 7.3.5.Thermodynamic Expansion -- 7.4.Parameterization -- 7.4.1.Gas Coverage and Patterning -- 7.5.Modeling Carbon Nanotubes in Air -- 7.5.1.Atmospheric Gases -- 7.5.2.Humid Air -- 7.6.Conclusion -- 8.Atomistic Simulation of Gas Adsorption in Carbon Nanostructures / F. Gala -- 8.1.Introduction -- 8.2.Nanostructured Carbon Allotropes -- 8.3.Theoretical Methods -- 8.3.1.Density Functional Theory Based ab initio Calculations -- 8.3.2.Hartree-Fock Based Quantum Chemistry ab initio Techniques -- 8.3.3.Monte Carlo Sampling Techniques in the Grand Canonical Ensemble -- 8.4.Gas Physical Adsorption in Carbon Nanostructures -- 8.4.1.Hydrogen Physical Adsorption in Carbon Nanostructures -- 8.4.1.1.CNTs -- 8.4.1.2.Activated and Microporous Carbons -- 8.4.1.3.Other Carbonaceous Structures -- 8.4.2.Gas Physical Adsorption in Carbon Nanostructures -- 8.4.2.1.Methane Physical Adsorption in Carbon Nanostructures -- 8.4.2.2.Physical Adsorption of Other Gaseous Species in Carbon Nanostructures -- 8.5.Gas Chemisorption in Carbonaceous Nanostructures -- 8.5.1.Hydrogen Chemisorption in Carbonaceous Nanostructures -- 8.5.1.1.Graphene -- 8.5.1.2.Fullerenes -- 8.5.1.3.Carbon Nanotubes -- 8.5.2.Gas Chemisorption in Carbon Nanostructures for Sensoring -- 8.5.2.1.Graphene-Based Nanostructures -- 8.5.2.2.CNTs -- 8.6.Conclusions -- 9.Carbon Nanotubes for Gas Sensing Applications: Principles and Transducers / Michele Penza -- 9.1.Introduction -- 9.2.Properties of Carbon Nanotubes -- 9.3.Fabrication of Carbon Nanotubes -- 9.3.1.Arc Discharge -- 9.3.2.Laser Ablation -- 9.3.3.Chemical Vapor Deposition -- 9.3.4.Other Methods of CNTs Synthesis -- 9.4.Gas Sensors Based on Carbon Nanotubes -- 9.4.1.Pristine Carbon Nanotubes -- 9.4.2.Modified CNTs -- 9.4.3.Purified CNTs -- 9.4.4.Functionalized CNTs -- 9.5.Transducers Using Carbon Nanotubes -- 9.5.1.Chemiresistors -- 9.5.2.FETs -- 9.5.3.Electrochemical Sensors -- 9.5.4.SAW and Piezoelectric Devices -- 9.5.5.Other Transducers -- 9.6.Comparative Analysis of CNT Gas Sensors -- 9.7.Challenges and Future Perspectives -- 9.8.Conclusion -- 9.9.Acknowledgment."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1130153997>
schema:inLanguage"en"
schema:name"Carbon nanomaterials for gas adsorption"
schema:numberOfPages"478"
schema:publisher
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.