skip to content
Cellularity and Jones basic construction Preview this item
ClosePreview this item
Checking...

Cellularity and Jones basic construction

Author: John Eric Graber; Frederick M Goodman; University of Iowa. Department of Mathematics.
Publisher: Iowa City : University of Iowa, 2009.
Dissertation: Ph. D. thesis University of Iowa 2009
Edition/Format:   Thesis/dissertation : Document : Thesis/dissertation : eBook   Computer File : English
Database:WorldCat
Summary:
This thesis establishes a framework for cellularity of algebras related to the Jones basic construction. The framework allows a uniform proof of cellularity of Brauer algebras, BMW algebras, walled Brauer algebras, partition algebras, and others. In this setting, the cellular bases are labeled by paths on certain branching diagrams rather than by tangles. Moreover, for this class of algebras, the cellular structures  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: John Eric Graber; Frederick M Goodman; University of Iowa. Department of Mathematics.
OCLC Number: 605085041
Notes: Thesis supervisor: Frederick M. Goodman.
Description: v, 88 leaves : illustrations
Details: Mode of access: World Wide Web.; System requirements: Adobe Reader.
Responsibility: by John Eric Graber.

Abstract:

This thesis establishes a framework for cellularity of algebras related to the Jones basic construction. The framework allows a uniform proof of cellularity of Brauer algebras, BMW algebras, walled Brauer algebras, partition algebras, and others. In this setting, the cellular bases are labeled by paths on certain branching diagrams rather than by tangles. Moreover, for this class of algebras, the cellular structures are compatible with restriction and induction of modules.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/605085041> # Cellularity and Jones basic construction
    a schema:CreativeWork, schema:Book, schema:MediaObject, bgn:Thesis, pto:Web_document ;
   bgn:inSupportOf "" ;
   library:oclcnum "605085041" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/474745307#Place/iowa_city> ; # Iowa City
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/iau> ;
   schema:about <http://id.worldcat.org/fast/1429961> ; # Brauer groups
   schema:about <http://id.worldcat.org/fast/954423> ; # Hecke algebras
   schema:about <http://id.worldcat.org/fast/948369> ; # Group algebras
   schema:about <http://experiment.worldcat.org/entity/work/data/474745307#Thing/basic_construction> ; # Basic Construction
   schema:contributor <http://experiment.worldcat.org/entity/work/data/474745307#Person/goodman_frederick_m> ; # Frederick M. Goodman
   schema:contributor <http://viaf.org/viaf/160119642> ; # University of Iowa. Department of Mathematics.
   schema:creator <http://experiment.worldcat.org/entity/work/data/474745307#Person/graber_john_eric> ; # John Eric Graber
   schema:datePublished "2009" ;
   schema:description "This thesis establishes a framework for cellularity of algebras related to the Jones basic construction. The framework allows a uniform proof of cellularity of Brauer algebras, BMW algebras, walled Brauer algebras, partition algebras, and others. In this setting, the cellular bases are labeled by paths on certain branching diagrams rather than by tangles. Moreover, for this class of algebras, the cellular structures are compatible with restriction and induction of modules."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/474745307> ;
   schema:inLanguage "en" ;
   schema:name "Cellularity and Jones basic construction"@en ;
   schema:productID "605085041" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/605085041#PublicationEvent/iowa_city_university_of_iowa_2009> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/474745307#Agent/university_of_iowa> ; # University of Iowa
   schema:url <http://ir.uiowa.edu/etd/292> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/605085041> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/474745307#Agent/university_of_iowa> # University of Iowa
    a bgn:Agent ;
   schema:name "University of Iowa" ;
    .

<http://experiment.worldcat.org/entity/work/data/474745307#Person/goodman_frederick_m> # Frederick M. Goodman
    a schema:Person ;
   schema:familyName "Goodman" ;
   schema:givenName "Frederick M." ;
   schema:name "Frederick M. Goodman" ;
    .

<http://experiment.worldcat.org/entity/work/data/474745307#Person/graber_john_eric> # John Eric Graber
    a schema:Person ;
   schema:familyName "Graber" ;
   schema:givenName "John Eric" ;
   schema:name "John Eric Graber" ;
    .

<http://experiment.worldcat.org/entity/work/data/474745307#Thing/basic_construction> # Basic Construction
    a schema:Thing ;
   schema:name "Basic Construction" ;
    .

<http://id.worldcat.org/fast/1429961> # Brauer groups
    a schema:Intangible ;
   schema:name "Brauer groups"@en ;
    .

<http://id.worldcat.org/fast/948369> # Group algebras
    a schema:Intangible ;
   schema:name "Group algebras"@en ;
    .

<http://id.worldcat.org/fast/954423> # Hecke algebras
    a schema:Intangible ;
   schema:name "Hecke algebras"@en ;
    .

<http://viaf.org/viaf/160119642> # University of Iowa. Department of Mathematics.
    a schema:Organization ;
   schema:name "University of Iowa. Department of Mathematics." ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.