skip to content
The Chinese Remainder Problem and Polynomial Interpolation. Preview this item
ClosePreview this item
Checking...

The Chinese Remainder Problem and Polynomial Interpolation.

Author: I J Schoenberg; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
Publisher: Ft. Belvoir Defense Technical Information Center NOV 1985.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
The Chinese Remainder Problem (Ch. R.P) is to find an integer x such that x = a sub i(mod m sub i) (i=1 ..., n), where mi are pairwise relatively prime moduli and a sub i are given integers. In the 1950's I learnt orally from Marcel Riesz that the CH. R.P. is an analogue of the polynomial interpolation problem P(x sub i) = Y sub i(i=1 ..., n), P(x) is a subset of pi sub n-1, and that the Ch. R.P. can be solved by an  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: I J Schoenberg; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
OCLC Number: 227666912
Description: 10 pages

Abstract:

The Chinese Remainder Problem (Ch. R.P) is to find an integer x such that x = a sub i(mod m sub i) (i=1 ..., n), where mi are pairwise relatively prime moduli and a sub i are given integers. In the 1950's I learnt orally from Marcel Riesz that the CH. R.P. is an analogue of the polynomial interpolation problem P(x sub i) = Y sub i(i=1 ..., n), P(x) is a subset of pi sub n-1, and that the Ch. R.P. can be solved by an analogue of Lagrange's interpolation formula. The author now adds the remark that the Ch. R.P. can be solved, even more economically, by an analogue of Newton formula using successive divided differences.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/227666912> # The Chinese Remainder Problem and Polynomial Interpolation.
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "227666912" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1862841766#Place/ft_belvoir> ; # Ft. Belvoir
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/formulas_mathematics> ; # Formulas(mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/numerical_mathematics> ; # Numerical Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/numbers> ; # Numbers
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/polynomials> ; # Polynomials
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/lagrangian_functions> ; # Lagrangian functions
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/interpolation> ; # Interpolation
    schema:about <http://experiment.worldcat.org/entity/work/data/1862841766#Topic/problem_solving> ; # Problem solving
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1862841766#Organization/wisconsin_univ_madison_mathematics_research_center> ; # WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
    schema:contributor <http://viaf.org/viaf/100968373> ; # I. J. Schoenberg
    schema:datePublished "NOV 1985" ;
    schema:datePublished "1985" ;
    schema:description "The Chinese Remainder Problem (Ch. R.P) is to find an integer x such that x = a sub i(mod m sub i) (i=1 ..., n), where mi are pairwise relatively prime moduli and a sub i are given integers. In the 1950's I learnt orally from Marcel Riesz that the CH. R.P. is an analogue of the polynomial interpolation problem P(x sub i) = Y sub i(i=1 ..., n), P(x) is a subset of pi sub n-1, and that the Ch. R.P. can be solved by an analogue of Lagrange's interpolation formula. The author now adds the remark that the Ch. R.P. can be solved, even more economically, by an analogue of Newton formula using successive divided differences."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1862841766> ;
    schema:inLanguage "en" ;
    schema:name "The Chinese Remainder Problem and Polynomial Interpolation."@en ;
    schema:productID "227666912" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/227666912#PublicationEvent/ft_belvoirdefense_technical_information_centernov_1985> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1862841766#Agent/defense_technical_information_center> ; # Defense Technical Information Center
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/227666912> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1862841766#Agent/defense_technical_information_center> # Defense Technical Information Center
    a bgn:Agent ;
    schema:name "Defense Technical Information Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/1862841766#Organization/wisconsin_univ_madison_mathematics_research_center> # WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
    a schema:Organization ;
    schema:name "WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER." ;
    .

<http://experiment.worldcat.org/entity/work/data/1862841766#Topic/formulas_mathematics> # Formulas(mathematics)
    a schema:Intangible ;
    schema:name "Formulas(mathematics)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1862841766#Topic/lagrangian_functions> # Lagrangian functions
    a schema:Intangible ;
    schema:name "Lagrangian functions"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1862841766#Topic/numerical_mathematics> # Numerical Mathematics
    a schema:Intangible ;
    schema:name "Numerical Mathematics"@en ;
    .

<http://viaf.org/viaf/100968373> # I. J. Schoenberg
    a schema:Person ;
    schema:familyName "Schoenberg" ;
    schema:givenName "I. J." ;
    schema:name "I. J. Schoenberg" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.