Preview this item
Preview this item
Checking...

# The Chinese Remainder Problem and Polynomial Interpolation.

Author: I J Schoenberg; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER. Ft. Belvoir Defense Technical Information Center NOV 1985. Print book : EnglishView all editions and formats WorldCat The Chinese Remainder Problem (Ch. R.P) is to find an integer x such that x = a sub i(mod m sub i) (i=1 ..., n), where mi are pairwise relatively prime moduli and a sub i are given integers. In the 1950's I learnt orally from Marcel Riesz that the CH. R.P. is an analogue of the polynomial interpolation problem P(x sub i) = Y sub i(i=1 ..., n), P(x) is a subset of pi sub n-1, and that the Ch. R.P. can be solved by an analogue of Lagrange's interpolation formula. The author now adds the remark that the Ch. R.P. can be solved, even more economically, by an analogue of Newton formula using successive divided differences.  Read more... (not yet rated) 0 with reviews - Be the first.

## Find a copy in the library

Finding libraries that hold this item...

## Details

### Abstract:

The Chinese Remainder Problem (Ch. R.P) is to find an integer x such that x = a sub i(mod m sub i) (i=1 ..., n), where mi are pairwise relatively prime moduli and a sub i are given integers. In the 1950's I learnt orally from Marcel Riesz that the CH. R.P. is an analogue of the polynomial interpolation problem P(x sub i) = Y sub i(i=1 ..., n), P(x) is a subset of pi sub n-1, and that the Ch. R.P. can be solved by an analogue of Lagrange's interpolation formula. The author now adds the remark that the Ch. R.P. can be solved, even more economically, by an analogue of Newton formula using successive divided differences.

## Reviews

User-contributed reviews

Be the first.

## Similar Items

### Related Subjects:(7)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

### Primary Entity

<http://www.worldcat.org/oclc/227666912> # The Chinese Remainder Problem and Polynomial Interpolation.
a schema:CreativeWork, schema:Book ;
library:oclcnum "227666912" ;
library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/767158370#Place/ft_belvoir> ; # Ft. Belvoir
library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
schema:about <http://experiment.worldcat.org/entity/work/data/767158370#Topic/lagrangian_functions> ; # Lagrangian functions
schema:about <http://experiment.worldcat.org/entity/work/data/767158370#Topic/numerical_mathematics> ; # Numerical Mathematics
schema:about <http://experiment.worldcat.org/entity/work/data/767158370#Topic/problem_solving> ; # Problem solving
schema:bookFormat bgn:PrintBook ;
schema:contributor <http://experiment.worldcat.org/entity/work/data/767158370#Person/schoenberg_i_j> ; # I. J. Schoenberg
schema:datePublished "NOV 1985" ;
schema:datePublished "1985" ;
schema:description "The Chinese Remainder Problem (Ch. R.P) is to find an integer x such that x = a sub i(mod m sub i) (i=1 ..., n), where mi are pairwise relatively prime moduli and a sub i are given integers. In the 1950's I learnt orally from Marcel Riesz that the CH. R.P. is an analogue of the polynomial interpolation problem P(x sub i) = Y sub i(i=1 ..., n), P(x) is a subset of pi sub n-1, and that the Ch. R.P. can be solved by an analogue of Lagrange's interpolation formula. The author now adds the remark that the Ch. R.P. can be solved, even more economically, by an analogue of Newton formula using successive divided differences."@en ;
schema:exampleOfWork <http://worldcat.org/entity/work/id/767158370> ;
schema:inLanguage "en" ;
schema:name "The Chinese Remainder Problem and Polynomial Interpolation."@en ;
schema:productID "227666912" ;
schema:publication <http://www.worldcat.org/title/-/oclc/227666912#PublicationEvent/ft_belvoirdefense_technical_information_centernov_1985> ;
schema:publisher <http://experiment.worldcat.org/entity/work/data/767158370#Agent/defense_technical_information_center> ; # Defense Technical Information Center
wdrs:describedby <http://www.worldcat.org/title/-/oclc/227666912> ;
.

### Related Entities

<http://experiment.worldcat.org/entity/work/data/767158370#Agent/defense_technical_information_center> # Defense Technical Information Center
a bgn:Agent ;
schema:name "Defense Technical Information Center" ;
.

a schema:Organization ;
schema:name "WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER." ;
.

<http://experiment.worldcat.org/entity/work/data/767158370#Person/schoenberg_i_j> # I. J. Schoenberg
a schema:Person ;
schema:familyName "Schoenberg" ;
schema:givenName "I. J." ;
schema:name "I. J. Schoenberg" ;
.

<http://experiment.worldcat.org/entity/work/data/767158370#Topic/formulas_mathematics> # Formulas(mathematics)
a schema:Intangible ;
schema:name "Formulas(mathematics)"@en ;
.

<http://experiment.worldcat.org/entity/work/data/767158370#Topic/lagrangian_functions> # Lagrangian functions
a schema:Intangible ;
schema:name "Lagrangian functions"@en ;
.

<http://experiment.worldcat.org/entity/work/data/767158370#Topic/numerical_mathematics> # Numerical Mathematics
a schema:Intangible ;
schema:name "Numerical Mathematics"@en ;
.

Content-negotiable representations