skip to content
A classical invitation to algebraic numbers and class fields Preview this item
ClosePreview this item

A classical invitation to algebraic numbers and class fields

Author: Harvey Cohn
Publisher: New York : Springer-Verlag, ©1978.
Series: Universitext
Edition/Format:   Print book : EnglishView all editions and formats

"Artin's 1932 Gottingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Additional Physical Format: Online version:
Cohn, Harvey.
Classical invitation to algebraic numbers and class fields.
New York : Springer-Verlag, ©1978
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Harvey Cohn
ISBN: 0387903453 9780387903453 3540903453 9783540903451
OCLC Number: 4193760
Notes: "With two appendices by Olga Taussky: 'Artin's 1932 Göttingen lectures on class field theery' and 'Connections between algebraic number theory and integral matrices.'"
Description: xiii, 328 pages : illustrations ; 24 cm.
Contents: I. Preliminaries.- 1. Introductory Remarks on Quadratic Forms.- 2. Algebraic Background.- A. Factorial rings (ufd).- B. Integral elements.- C. Euclidean domains.- D. Modules and ideals.- E. Principal ideal domains (pid).- F. Rational integers.- 3. Quadratic Euclidean Rings.- 4. Congruence Classes.- A. Norm and phi-function.- B. Module operations.- C. Chinese remainder theorem.- D. Euler phi-function and Mobius mu-function.- E. Rational residue class groups.- F. Quadratic reciprocity.- 5. Polynomial Rings.- A. Factorization properties.- B. Finite fields.- C. Abstract model and automorphisms.- 6. Dedekind Domains.- A. Prime and maximal ideals.- B. Noether axioms.- C. Sufficiency of axioms.- D. Equivalence classes.- 7. Extensions of Dedekind Domains.- A. Validity of axioms.- B. Root-discriminant.- C. Basis of theorems of Hermite and Smith.- 8. Rational and Elliptic Functions.- A. Rational functions.- B. Elliptic functions.- C. Riemann surfaces.- D. Ideal structure.- E. Principal ideals (Abel's theorem).- II. Ideal Structure in Number Fields.- 9. Basis and Discriminant.- A. Free nonsingular basis.- B. Norm and trace.- C. Conjugates.- D. Basis and discriminant computation.- E. Quadratic field $$\Phi \left( {\sqrt D } \right)$$.- F. Pure cubic field $$\Phi \left( {\sqrt[3]{m}} \right) $$.- G. Cyclotomic field $$\Phi \left( {\exp 2\pi i/m} \right)$$.- H. Ring index.- 10. Prime Factorization.- A. Main theorem.- B. Ring ideals.- C. Quadratic field $$\Phi \left( {\sqrt m } \right)$$.- D. Kronecker symbol.- E. Pure cubic field $$\Phi \left( {\sqrt[3]{m}} \right)$$.- F. Cyclotomic field $$\Phi \left( {\exp 2\pi i/m} \right)$$.- G. Discriminantal divisors.- 11. Units.- A. Quadratic fields.- B. Pell's equation.- C. Dirichlet theorem.- D. Imbeddings of 0 and 0*.- 12. Geometry of Numbers.- A. Convex bodies.- B. Existence theorem.- C. Parallelopiped applications.- D. Octahedron (norm) applications.- E. Volume coordinates.- 13. Finite Determination of Class Number.- A. Primary associates.- B. Norm estimates and class number.- C. Norm density.- D. Zeta function.- E. Quadratic case.- III. Introduction to Class Field Theory.- 14. Quadratic Forms, Rings and Genera.- A. Forms and modules.- B. Strict equivalence.- C. Ring equivalence.- D. Genus equivalence.- E. Number of genera.- F. Quadratic reciprocity.- G. Genus characters.- H. p-adic numbers.- I. Norm-residue theory: Hilbert symbol.- 15. Ray Class Structure and Fields, Hilbert Class Fields.- A. Ray modulus semigroup.- B. Ray number groups.- C. Ray ideal groups.- D. Conductor and maximal ray ideal group.- E. Weber-Takagi correspondence.- F. Rational base field.- G. Genus extension field.- H. Hilbert class field.- I. Ring class fields.- 16. Hilbert Sequences.- A. Galois groups.- B. Classical examples.- C. Relative norms.- D. Definition of Hilbert sequence.- E. Illustrations (and quadratic reciprocity again).- F. Tchebotareff monodromy theorem.- 17 Discriminant and Conductor.- A. Relative different and discriminant.- B. Kronecker's theory of forms.- C. Hensel's local theory.- D. Relative quadratic fields.- E. Ramification in Hilbert sequence.- F. Conductor-discriminant relation.- G. Relative bases.- 18. The Artin Isomorphism.- A. Artin symbol.- B. Illustrations.- C. Artin reciprocity.- D. Automorphisms of base fields.- E. Arithmetic invariants.- F. Group extensions and class field transfers.- G. Dirichlet genus characters.- 19. The Zeta-Function.- A. Class number relations.- B. Unit relations.- C. Hecke L-function.- D. Tchebotareff density theorem.- E. Analytic motivation of class field.- F. Artin L-function.- Appendices (by Olga Taussky).- Lectures on Class Field Theory by E. Artin (Gottingen 1932) Notes by O. Taussky.- into Connections Between Algebraic Number Theory and Integral Matrices (Appendix by Olga Taussky).- Subject Matter Index.
Series Title: Universitext
Responsibility: Harvey Cohn.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # A classical invitation to algebraic numbers and class fields
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "4193760" ;
   library:placeOfPublication <> ; # New York
   library:placeOfPublication <> ;
   schema:about <> ; # Nombres algébriques, Théorie des
   schema:about <> ; # Klassen (wiskunde)
   schema:about <> ; # Class field theory
   schema:about <> ; # Algebraic number theory
   schema:about <> ;
   schema:about <> ; # Algebraïsche getallen
   schema:about <> ; # Corps de classe
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "1978" ;
   schema:creator <> ; # Harvey Cohn
   schema:datePublished "1978" ;
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:isPartOf <> ; # Universitext
   schema:isSimilarTo <> ;
   schema:name "A classical invitation to algebraic numbers and class fields"@en ;
   schema:productID "4193760" ;
   schema:publication <> ;
   schema:publisher <> ; # Springer-Verlag
   schema:url <> ;
   schema:url <> ;
   schema:workExample <> ;
   schema:workExample <> ;
   umbel:isLike <> ;
   wdrs:describedby <> ;

Related Entities

<> # New York
    a schema:Place ;
   schema:name "New York" ;

<> # Springer-Verlag
    a bgn:Agent ;
   schema:name "Springer-Verlag" ;

<> # Universitext
    a bgn:PublicationSeries ;
   schema:hasPart <> ; # A classical invitation to algebraic numbers and class fields
   schema:name "Universitext" ;

<> # Algebraïsche getallen
    a schema:Intangible ;
   schema:name "Algebraïsche getallen"@en ;

<> # Klassen (wiskunde)
    a schema:Intangible ;
   schema:name "Klassen (wiskunde)"@en ;

<> # Nombres algébriques, Théorie des
    a schema:Intangible ;
   schema:name "Nombres algébriques, Théorie des"@en ;
   schema:name "Nombres algébriques, Théorie des"@fr ;

<> # Algebraic number theory
    a schema:Intangible ;
   schema:name "Algebraic number theory"@en ;

<> # Class field theory
    a schema:Intangible ;
   schema:name "Class field theory"@en ;

<> # Harvey Cohn
    a schema:Person ;
   schema:familyName "Cohn" ;
   schema:givenName "Harvey" ;
   schema:name "Harvey Cohn" ;

    a schema:ProductModel ;
   schema:isbn "0387903453" ;
   schema:isbn "9780387903453" ;

    a schema:ProductModel ;
   schema:isbn "3540903453" ;
   schema:isbn "9783540903451" ;

    a schema:CreativeWork ;
   rdfs:label "Classical invitation to algebraic numbers and class fields." ;
   schema:description "Online version:" ;
   schema:isSimilarTo <> ; # A classical invitation to algebraic numbers and class fields

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.