コンテンツへ移動
Competitive Analysis of Call Admission Algorithms that Allow Delay. 資料のプレビュー
閉じる資料のプレビュー
確認中…

Competitive Analysis of Call Admission Algorithms that Allow Delay.

著者: Anja FeldmannBruce MaggsJiri SgallDaniel D SleatorAndrew Tomkinsすべての著者
出版: Ft. Belvoir Defense Technical Information Center 13 JAN 1995.
エディション/フォーマット:   電子書籍 : English
データベース:WorldCat
概要:
This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: インターネット資料
ドキュメントの種類: インターネットリソース
すべての著者/寄与者: Anja Feldmann; Bruce Maggs; Jiri Sgall; Daniel D Sleator; Andrew Tomkins; CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.
OCLC No.: 227828357
物理形態: 35 p.

概要:

This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the network. The duration of the request is unknown to the algorithm when the request is made. We analyze the performance of the algorithms on simple networks such as linear arrays, trees, and networks with small separators. We use three measures to quantify their performance: makespan, maximum response time, and data-admission ratio. Our results include a proof that greedy algorithms are log-competitive with respect to makespan on n-node trees for arbitrary durations and bandwidth, a proof that on an n-node tree no algorithm can be better than Omega (log log n/log log log n)- competitive with respect to makespan, and a proof that no algorithm can be better than Omega(log n)-competitive with respect to call-admission and data-admission ratio on a linear array, if each request can be delayed for at most some constant times its (known) duration. (AN).

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/227828357>
library:oclcnum"227828357"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/227828357>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:datePublished"1995"
schema:datePublished"13 JAN 1995"
schema:description"This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the network. The duration of the request is unknown to the algorithm when the request is made. We analyze the performance of the algorithms on simple networks such as linear arrays, trees, and networks with small separators. We use three measures to quantify their performance: makespan, maximum response time, and data-admission ratio. Our results include a proof that greedy algorithms are log-competitive with respect to makespan on n-node trees for arbitrary durations and bandwidth, a proof that on an n-node tree no algorithm can be better than Omega (log log n/log log log n)- competitive with respect to makespan, and a proof that no algorithm can be better than Omega(log n)-competitive with respect to call-admission and data-admission ratio on a linear array, if each request can be delayed for at most some constant times its (known) duration. (AN)."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1807662828>
schema:inLanguage"en"
schema:name"Competitive Analysis of Call Admission Algorithms that Allow Delay."@en
schema:numberOfPages"35"
schema:publisher
schema:url
schema:url<http://handle.dtic.mil/100.2/ADA292242>

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.