컨텐츠로 이동
Competitive Analysis of Call Admission Algorithms that Allow Delay. 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Competitive Analysis of Call Admission Algorithms that Allow Delay.

저자: Anja FeldmannBruce MaggsJiri SgallDaniel D SleatorAndrew Tomkins모든 저자
출판사: Ft. Belvoir Defense Technical Information Center 13 JAN 1995.
판/형식:   전자도서 : 영어
데이터베이스:WorldCat
요약:
This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the  더 읽기…
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

온라인으로 문서 찾기

이 항목에 대한 링크

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

자료 유형: 인터넷 자료
문서 형식: 인터넷 자원
모든 저자 / 참여자: Anja Feldmann; Bruce Maggs; Jiri Sgall; Daniel D Sleator; Andrew Tomkins; CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.
OCLC 번호: 227828357
설명: 35 p.

초록:

This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the network. The duration of the request is unknown to the algorithm when the request is made. We analyze the performance of the algorithms on simple networks such as linear arrays, trees, and networks with small separators. We use three measures to quantify their performance: makespan, maximum response time, and data-admission ratio. Our results include a proof that greedy algorithms are log-competitive with respect to makespan on n-node trees for arbitrary durations and bandwidth, a proof that on an n-node tree no algorithm can be better than Omega (log log n/log log log n)- competitive with respect to makespan, and a proof that no algorithm can be better than Omega(log n)-competitive with respect to call-admission and data-admission ratio on a linear array, if each request can be delayed for at most some constant times its (known) duration. (AN).

리뷰

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기
요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/227828357>
library:oclcnum"227828357"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/227828357>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:datePublished"1995"
schema:datePublished"13 JAN 1995"
schema:description"This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the network. The duration of the request is unknown to the algorithm when the request is made. We analyze the performance of the algorithms on simple networks such as linear arrays, trees, and networks with small separators. We use three measures to quantify their performance: makespan, maximum response time, and data-admission ratio. Our results include a proof that greedy algorithms are log-competitive with respect to makespan on n-node trees for arbitrary durations and bandwidth, a proof that on an n-node tree no algorithm can be better than Omega (log log n/log log log n)- competitive with respect to makespan, and a proof that no algorithm can be better than Omega(log n)-competitive with respect to call-admission and data-admission ratio on a linear array, if each request can be delayed for at most some constant times its (known) duration. (AN)."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1807662828>
schema:inLanguage"en"
schema:name"Competitive Analysis of Call Admission Algorithms that Allow Delay."@en
schema:numberOfPages"35"
schema:publisher
schema:url
schema:url<http://handle.dtic.mil/100.2/ADA292242>

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.