跳至内容
Competitive Analysis of Call Admission Algorithms that Allow Delay. 線上預覽
關閉線上預覽
正在查...

Competitive Analysis of Call Admission Algorithms that Allow Delay.

作者: Anja FeldmannBruce MaggsJiri SgallDaniel D SleatorAndrew Tomkins所有作者
出版商: Ft. Belvoir Defense Technical Information Center 13 JAN 1995.
版本/格式:   電子書 : 英語
資料庫:WorldCat
提要:
This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the  再讀一些...
評定級別:

(尚未評分) 0 附有評論 - 成爲第一個。

主題
更多類似這樣的

 

在線上查詢

與資料的連結

在圖書館查詢

&AllPage.SpinnerRetrieving; 正在查詢有此資料的圖書館...

詳細書目

資料類型: 網際網路資源
文件類型: 網路資源
所有的作者/貢獻者: Anja Feldmann; Bruce Maggs; Jiri Sgall; Daniel D Sleator; Andrew Tomkins; CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.
OCLC系統控制編碼: 227828357
描述: 35 p.

摘要:

This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the network. The duration of the request is unknown to the algorithm when the request is made. We analyze the performance of the algorithms on simple networks such as linear arrays, trees, and networks with small separators. We use three measures to quantify their performance: makespan, maximum response time, and data-admission ratio. Our results include a proof that greedy algorithms are log-competitive with respect to makespan on n-node trees for arbitrary durations and bandwidth, a proof that on an n-node tree no algorithm can be better than Omega (log log n/log log log n)- competitive with respect to makespan, and a proof that no algorithm can be better than Omega(log n)-competitive with respect to call-admission and data-admission ratio on a linear array, if each request can be delayed for at most some constant times its (known) duration. (AN).

評論

讀者提供的評論
正在擷取GoodReads評論...
正在擷取DOGObooks的評論

標籤

成爲第一個
確認申請

你可能已經申請過這份資料。若還是想申請,請選確認。

連結資料


<http://www.worldcat.org/oclc/227828357>
library:oclcnum"227828357"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/227828357>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:datePublished"1995"
schema:datePublished"13 JAN 1995"
schema:description"This paper presents an analysis of several simple on-line algorithms for processing requests for connections in distributed networks. These algorithms are called call admission algorithms. Each request comes with a source, a destination, and a bandwidth requirement. The call admission algorithm decides whether to accept a request, and if so, when to schedule it and which path the connection should use through the network. The duration of the request is unknown to the algorithm when the request is made. We analyze the performance of the algorithms on simple networks such as linear arrays, trees, and networks with small separators. We use three measures to quantify their performance: makespan, maximum response time, and data-admission ratio. Our results include a proof that greedy algorithms are log-competitive with respect to makespan on n-node trees for arbitrary durations and bandwidth, a proof that on an n-node tree no algorithm can be better than Omega (log log n/log log log n)- competitive with respect to makespan, and a proof that no algorithm can be better than Omega(log n)-competitive with respect to call-admission and data-admission ratio on a linear array, if each request can be delayed for at most some constant times its (known) duration. (AN)."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1807662828>
schema:inLanguage"en"
schema:name"Competitive Analysis of Call Admission Algorithms that Allow Delay."@en
schema:numberOfPages"35"
schema:publisher
schema:url
schema:url<http://handle.dtic.mil/100.2/ADA292242>

Content-negotiable representations

關閉視窗

請登入WorldCat 

没有帳號嗎?你可很容易的 建立免費的帳號.