## Find a copy online

### Links to this item

## Find a copy in the library

Finding libraries that hold this item...

## Details

Genre/Form: | Electronic books |
---|---|

Additional Physical Format: | Print version: |

Material Type: | Document, Internet resource |

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
Serge Lang |

ISBN: | 9783642592737 3642592732 9783540780595 3540780599 |

OCLC Number: | 858929033 |

Description: | 1 online resource. |

Contents: | One Basic Theory -- I Complex Numbers and Functions -- II Power Series -- III Cauchy's Theorem, First Part -- IV Winding Numbers and Cauchy's Theorem -- V Applications of Cauchy's Integral Formula -- VI Calculus of Residues -- VII Conformal Mappings -- VIII Harmonic Functions -- Two Geometric Function Theory -- IX Schwarz Reflection -- X The Riemann Mapping Theorem -- XI Analytic Continuation Along Curves -- Three Various Analytic Topics -- XII Applications of the Maximum Modulus Principle and Jensen's Formula -- XIII Entire and Meromorphic Functions -- XIV Elliptic Functions -- XV The Gamma and Zeta Functions -- XVI The Prime Number Theorem -- {sect}1. Summation by Parts and Non-Absolute Convergence -- {sect}2. Difference Equations -- {sect}3. Analytic Differential Equations -- {sect}4. Fixed Points of a Fractional Linear Transformation. |

Series Title: | Graduate Texts in Mathematics, 103; Graduate texts in mathematics, 103. |

Responsibility: | by Serge Lang. |

### Abstract:

The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. The first half, more or less, can be used for a one-semester course addressed to undergraduates. The second half can be used for a second semester, at either level. Somewhat more material has been included than can be covered at leisure in one or two terms, to give opportunities for the instructor to exercise individual taste, and to lead the course in whatever directions strikes the instructor's fancy at the time as well as extra read ing material for students on their own. A large number of routine exer cises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc.) and I would recommend to anyone to look through them. More recent texts have emphasized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex analysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues.

## Reviews

*User-contributed reviews*

Add a review and share your thoughts with other readers.
Be the first.

Add a review and share your thoughts with other readers.
Be the first.

## Tags

Add tags for "Complex Analysis".
Be the first.