omitir hasta el contenido
Computer analysis of Sprouts Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Computer analysis of Sprouts

Autor: David Applegate; Guy J Jacobson; Daniel D Sleator
Editorial: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1991]
Serie: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-91-144.
Edición/Formato:   Libro : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Abstract: "Sprouts is a two-player pencil-and-paper game with a topological flavor. It was invented in 1967 by Michael Paterson and John Conway, and was popularized by Martin Gardner in the Mathematical Games column of Scientific American magazine [6]. We have written a computer program to analyze the n-spot game of Sprouts for general n. Our program uses a number of standard techniques to expedite adversary
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de documento: Libro/Texto
Todos autores / colaboradores: David Applegate; Guy J Jacobson; Daniel D Sleator
Número OCLC: 24129940
Notas: "May 1991."
Descripción: 19 pages : illustrations ; 28 cm.
Título de la serie: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-91-144.
Responsabilidad: David Applegate, Guy Jacobson, Daniel Sleator.

Resumen:

Abstract: "Sprouts is a two-player pencil-and-paper game with a topological flavor. It was invented in 1967 by Michael Paterson and John Conway, and was popularized by Martin Gardner in the Mathematical Games column of Scientific American magazine [6]. We have written a computer program to analyze the n-spot game of Sprouts for general n. Our program uses a number of standard techniques to expedite adversary searches such as cutting off the search as soon as the value can be determined, and hashing previously evaluated positions.

But the truly innovative feature is our representation of game positions, which provides enough information to generate moves and has the property that many different planar graphs collapse into the same representation. This has an enormous impact on the speed of the search. The complexity of n-spot Sprouts grows extremely rapidly with n. According to Gardner [7, page 7], Conway estimated that analysis of the eight-spot game was beyond the reach of present-day computers. Before our program, even the value of the seven-spot game was unknown; we have calculated the value of all games up to and including eleven spots.

Our calculation supports the Sprouts Conjecture: The first player loses if n is 0, 1 or 2 modulo 6 and wins otherwise."

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Temas relacionados:(2)

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/24129940>
library:oclcnum"24129940"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1991"
schema:description"Abstract: "Sprouts is a two-player pencil-and-paper game with a topological flavor. It was invented in 1967 by Michael Paterson and John Conway, and was popularized by Martin Gardner in the Mathematical Games column of Scientific American magazine [6]. We have written a computer program to analyze the n-spot game of Sprouts for general n. Our program uses a number of standard techniques to expedite adversary searches such as cutting off the search as soon as the value can be determined, and hashing previously evaluated positions."@en
schema:description"Our calculation supports the Sprouts Conjecture: The first player loses if n is 0, 1 or 2 modulo 6 and wins otherwise.""@en
schema:description"But the truly innovative feature is our representation of game positions, which provides enough information to generate moves and has the property that many different planar graphs collapse into the same representation. This has an enormous impact on the speed of the search. The complexity of n-spot Sprouts grows extremely rapidly with n. According to Gardner [7, page 7], Conway estimated that analysis of the eight-spot game was beyond the reach of present-day computers. Before our program, even the value of the seven-spot game was unknown; we have calculated the value of all games up to and including eleven spots."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/25635671>
schema:inLanguage"en"
schema:isPartOf
schema:name"Computer analysis of Sprouts"@en
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.