aller au contenu
Computer analysis of Sprouts Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

Computer analysis of Sprouts

Auteur : David Applegate; Guy J Jacobson; Daniel D Sleator
Éditeur : Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1991]
Collection : Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-91-144.
Édition/format :   Livre : AnglaisVoir toutes les éditions et les formats
Base de données :WorldCat
Résumé :
Abstract: "Sprouts is a two-player pencil-and-paper game with a topological flavor. It was invented in 1967 by Michael Paterson and John Conway, and was popularized by Martin Gardner in the Mathematical Games column of Scientific American magazine [6]. We have written a computer program to analyze the n-spot game of Sprouts for general n. Our program uses a number of standard techniques to expedite adversary
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Format : Livre
Tous les auteurs / collaborateurs : David Applegate; Guy J Jacobson; Daniel D Sleator
Numéro OCLC : 24129940
Notes : "May 1991."
Description : 19 pages : illustrations ; 28 cm.
Titre de collection : Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-91-144.
Responsabilité : David Applegate, Guy Jacobson, Daniel Sleator.

Résumé :

Abstract: "Sprouts is a two-player pencil-and-paper game with a topological flavor. It was invented in 1967 by Michael Paterson and John Conway, and was popularized by Martin Gardner in the Mathematical Games column of Scientific American magazine [6]. We have written a computer program to analyze the n-spot game of Sprouts for general n. Our program uses a number of standard techniques to expedite adversary searches such as cutting off the search as soon as the value can be determined, and hashing previously evaluated positions.

But the truly innovative feature is our representation of game positions, which provides enough information to generate moves and has the property that many different planar graphs collapse into the same representation. This has an enormous impact on the speed of the search. The complexity of n-spot Sprouts grows extremely rapidly with n. According to Gardner [7, page 7], Conway estimated that analysis of the eight-spot game was beyond the reach of present-day computers. Before our program, even the value of the seven-spot game was unknown; we have calculated the value of all games up to and including eleven spots.

Our calculation supports the Sprouts Conjecture: The first player loses if n is 0, 1 or 2 modulo 6 and wins otherwise."

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.

Ouvrages semblables

Sujets associés :(2)

Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/24129940>
library:oclcnum"24129940"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/24129940>
rdf:typeschema:Book
schema:about
<http://id.worldcat.org/fast/1012120>
rdf:typeschema:Intangible
schema:name"Mathematical recreations"@en
schema:name"Mathematical recreations."@en
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1991"
schema:description"Abstract: "Sprouts is a two-player pencil-and-paper game with a topological flavor. It was invented in 1967 by Michael Paterson and John Conway, and was popularized by Martin Gardner in the Mathematical Games column of Scientific American magazine [6]. We have written a computer program to analyze the n-spot game of Sprouts for general n. Our program uses a number of standard techniques to expedite adversary searches such as cutting off the search as soon as the value can be determined, and hashing previously evaluated positions."@en
schema:description"Our calculation supports the Sprouts Conjecture: The first player loses if n is 0, 1 or 2 modulo 6 and wins otherwise.""@en
schema:description"But the truly innovative feature is our representation of game positions, which provides enough information to generate moves and has the property that many different planar graphs collapse into the same representation. This has an enormous impact on the speed of the search. The complexity of n-spot Sprouts grows extremely rapidly with n. According to Gardner [7, page 7], Conway estimated that analysis of the eight-spot game was beyond the reach of present-day computers. Before our program, even the value of the seven-spot game was unknown; we have calculated the value of all games up to and including eleven spots."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/25635671>
schema:inLanguage"en"
schema:name"Computer analysis of Sprouts"@en
schema:publisher
schema:url

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.