skip to content
Conformal prediction for reliable machine learning : theory, adaptations and applications Preview this item
ClosePreview this item
Checking...

Conformal prediction for reliable machine learning : theory, adaptations and applications

Author: Vineeth Balasubramanian; Shen-Shyang Ho; Vladimir Vovk
Publisher: Waltham, MA : Morgan Kaufmann, 2014.
Edition/Format:   eBook : Document : English : 1st edView all editions and formats
Summary:
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Conformal prediction for reliable machine learning.
Amsterdam ; Boston : Morgan Kaufmann, 2014
(DLC) 2014003894
(OCoLC)869777037
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Vineeth Balasubramanian; Shen-Shyang Ho; Vladimir Vovk
ISBN: 9780124017153 0124017150 0123985374 9780123985378
OCLC Number: 880945071
Description: 1 online resource (1 volume) : illustrations
Contents: Half Title; Title Page; Copyright; Copyright Permissions; Contents; Contributing Authors; Foreword; Preface; Book Organization; Part I: Theory; Part II: Adaptations; Part III: Applications; Companion Website; Contacting Us; Acknowledgments; Part I: Theory; 1 The Basic Conformal Prediction Framework; 1.1 The Basic Setting and Assumptions; 1.2 Set and Confidence Predictors; 1.2.1 Validity and Efficiency of Set and Confidence Predictors; 1.3 Conformal Prediction; 1.3.1 The Binary Case; 1.3.2 The Gaussian Case; 1.4 Efficiency in the Case of Prediction without Objects. 1.5 Universality of Conformal Predictors1.6 Structured Case and Classification; 1.7 Regression; 1.8 Additional Properties of Validity and Efficiency in the Online Framework; 1.8.1 Asymptotically Efficient Conformal Predictors; Acknowledgments; 2 Beyond the Basic Conformal Prediction Framework; 2.1 Conditional Validity; 2.2 Conditional Conformal Predictors; 2.2.1 Venn's Dilemma; 2.3 Inductive Conformal Predictors; 2.3.1 Conditional Inductive Conformal Predictors; 2.4 Training Conditional Validity of Inductive Conformal Predictors; 2.5 Classical Tolerance Regions. 2.6 Object Conditional Validity and Efficiency2.6.1 Negative Result; 2.6.2 Positive Results; 2.7 Label Conditional Validity and ROC Curves; 2.8 Venn Predictors; 2.8.1 Inductive Venn Predictors; 2.8.2 Venn Prediction without Objects; Acknowledgments; Part II: Adaptations; 3 Active Learning; 3.1 Introduction; 3.2 Background and Related Work; 3.2.1 Pool-based Active Learning with Serial Query; SVM-based methods; Statistical methods; Ensemble-based methods; Other methods; 3.2.2 Batch Mode Active Learning; 3.2.3 Online Active Learning; 3.3 Active Learning Using Conformal Prediction. 3.3.1 Query by Transduction (QBT)Algorithmic formulation; 3.3.2 Generalized Query by Transduction; Algorithmic formulation; Combining multiple criteria in GQBT; 3.3.3 Multicriteria Extension to QBT; 3.4 Experimental Results; 3.4.1 Benchmark Datasets; 3.4.2 Application to Face Recognition; 3.4.3 Multicriteria Extension to QBT; 3.5 Discussion and Conclusions; Acknowledgments; 4 Anomaly Detection; 4.1 Introduction; 4.2 Background; 4.3 Conformal Prediction for Multiclass Anomaly Detection; 4.3.1 A Nonconformity Measure for Multiclass Anomaly Detection; 4.4 Conformal Anomaly Detection. 4.4.1 Conformal Anomalies4.4.2 Offline versus Online Conformal Anomaly Detection; 4.4.3 Unsupervised and Semi-supervised Conformal Anomaly Detection; 4.4.4 Classification Performance and Tuning of the Anomaly Threshold; 4.5 Inductive Conformal Anomaly Detection; 4.5.1 Offline and Semi-Offline Inductive Conformal Anomaly Detection; 4.5.2 Online Inductive Conformal Anomaly Detection; 4.6 Nonconformity Measures for Examples Represented as Sets of Points; 4.6.1 The Directed Hausdorff Distance; 4.6.2 The Directed Hausdorff k-Nearest Neighbors Nonconformity Measure.
Responsibility: edited by Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk.

Abstract:

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly.

Reviews

Editorial reviews

Publisher Synopsis

"...captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/880945071> # Conformal prediction for reliable machine learning : theory, adaptations and applications
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "880945071" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1878335758#Place/waltham_ma> ; # Waltham, MA
    schema:about <http://dewey.info/class/006.31/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1878335758#Topic/machine_learning> ; # Machine learning
    schema:bookEdition "1st ed." ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1878335758#Person/vovk_vladimir_1960> ; # Vladimir Vovk
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1878335758#Person/ho_shen_shyang> ; # Shen-Shyang Ho
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1878335758#Person/balasubramanian_vineeth> ; # Vineeth Balasubramanian
    schema:datePublished "2014" ;
    schema:description "The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly."@en ;
    schema:description "Half Title; Title Page; Copyright; Copyright Permissions; Contents; Contributing Authors; Foreword; Preface; Book Organization; Part I: Theory; Part II: Adaptations; Part III: Applications; Companion Website; Contacting Us; Acknowledgments; Part I: Theory; 1 The Basic Conformal Prediction Framework; 1.1 The Basic Setting and Assumptions; 1.2 Set and Confidence Predictors; 1.2.1 Validity and Efficiency of Set and Confidence Predictors; 1.3 Conformal Prediction; 1.3.1 The Binary Case; 1.3.2 The Gaussian Case; 1.4 Efficiency in the Case of Prediction without Objects."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1878335758> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/869777037> ;
    schema:name "Conformal prediction for reliable machine learning : theory, adaptations and applications"@en ;
    schema:productID "880945071" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/880945071#PublicationEvent/waltham_ma_morgan_kaufmann_2014> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1878335758#Agent/morgan_kaufmann> ; # Morgan Kaufmann
    schema:url <http://proquest.tech.safaribooksonline.de/9780123985378> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=1680381> ;
    schema:url <http://proquest.safaribooksonline.com/9780123985378> ;
    schema:url <http://proxy.library.carleton.ca/login?url=http://proquest.safaribooksonline.com/?uiCode=carleton&xmlId=9780123985378> ;
    schema:workExample <http://worldcat.org/isbn/9780123985378> ;
    schema:workExample <http://worldcat.org/isbn/9780124017153> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/880945071> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1878335758#Agent/morgan_kaufmann> # Morgan Kaufmann
    a bgn:Agent ;
    schema:name "Morgan Kaufmann" ;
    .

<http://experiment.worldcat.org/entity/work/data/1878335758#Person/balasubramanian_vineeth> # Vineeth Balasubramanian
    a schema:Person ;
    schema:familyName "Balasubramanian" ;
    schema:givenName "Vineeth" ;
    schema:name "Vineeth Balasubramanian" ;
    .

<http://experiment.worldcat.org/entity/work/data/1878335758#Person/ho_shen_shyang> # Shen-Shyang Ho
    a schema:Person ;
    schema:familyName "Ho" ;
    schema:givenName "Shen-Shyang" ;
    schema:name "Shen-Shyang Ho" ;
    .

<http://experiment.worldcat.org/entity/work/data/1878335758#Person/vovk_vladimir_1960> # Vladimir Vovk
    a schema:Person ;
    schema:birthDate "1960" ;
    schema:familyName "Vovk" ;
    schema:givenName "Vladimir" ;
    schema:name "Vladimir Vovk" ;
    .

<http://worldcat.org/isbn/9780123985378>
    a schema:ProductModel ;
    schema:isbn "0123985374" ;
    schema:isbn "9780123985378" ;
    .

<http://worldcat.org/isbn/9780124017153>
    a schema:ProductModel ;
    schema:isbn "0124017150" ;
    schema:isbn "9780124017153" ;
    .

<http://www.worldcat.org/oclc/869777037>
    a schema:CreativeWork ;
    rdfs:label "Conformal prediction for reliable machine learning." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/880945071> ; # Conformal prediction for reliable machine learning : theory, adaptations and applications
    .

<http://www.worldcat.org/title/-/oclc/880945071>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/880945071> ; # Conformal prediction for reliable machine learning : theory, adaptations and applications
    schema:dateModified "2018-07-13" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.