skip to content
CONSTRUCTIONS COMBINATOIRES DE SURFACES ALGEBRIQUES REELLES Preview this item
ClosePreview this item
Checking...

CONSTRUCTIONS COMBINATOIRES DE SURFACES ALGEBRIQUES REELLES

Author: FREDERIC BIHAN; Ilia Itenberg; Université de Rennes 1.
Publisher: [S.l.] : [s.n.], 1998.
Dissertation: Thèse de doctorat : Mathématiques et application : Rennes 1 : 1998.
Edition/Format:   Thesis/dissertation : Thesis/dissertation : FrenchView all editions and formats
Summary:
UNE SURFACE ALGEBRIQUE REELLE EST UNE SURFACE COMPLEXE X EQUIPEE D'UNE INVOLUTION ANTIHOLOMORPHE C : X X. L'ENSEMBLE RX DES POINTS FIXES DE C EST APPELE ENSEMBLE DES POINTS REELS DE LA SURFACE. LE TRAVAIL PRESENTE EST MOTIVE PAR UNE QUESTION IMPORTANTE EN TOPOLOGIE DES SURFACES ALGEBRIQUES REELLES : POUR UNE SURFACE COMPLEXE X DONNEE, QUELLES SONT LES VALEURS MAXIMALES POSSIBLES DES NOMBRES DE BETTI B 0(RX) ET B  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Thesis/dissertation
Document Type: Book
All Authors / Contributors: FREDERIC BIHAN; Ilia Itenberg; Université de Rennes 1.
OCLC Number: 490690202
Notes: 1998REN10143.
Description: 120 p.
Responsibility: FREDERIC BIHAN ; SOUS LA DIR. DE ILIA ITENBERG.

Abstract:

UNE SURFACE ALGEBRIQUE REELLE EST UNE SURFACE COMPLEXE X EQUIPEE D'UNE INVOLUTION ANTIHOLOMORPHE C : X X. L'ENSEMBLE RX DES POINTS FIXES DE C EST APPELE ENSEMBLE DES POINTS REELS DE LA SURFACE. LE TRAVAIL PRESENTE EST MOTIVE PAR UNE QUESTION IMPORTANTE EN TOPOLOGIE DES SURFACES ALGEBRIQUES REELLES : POUR UNE SURFACE COMPLEXE X DONNEE, QUELLES SONT LES VALEURS MAXIMALES POSSIBLES DES NOMBRES DE BETTI B 0(RX) ET B 1(RX) ? UNE APPLICATION STANDARD DES INEGALITES DE COMESSATI ET DE SMITH-THOM PERMET D'OBTENIR DES BORNES SUPERIEURES POUR CES NOMBRES DE BETTI. D'AUTRE PART, O.VIRO PROPOSA UNE CONJECTURE GENERALISANT CELLE DE RAGSDALE POUR LES COURBES DANS RP 2 : SI X EST UNE SURFACE COMPACTE NON SINGULIERE ET SIMPLEMENT CONNEXE ALORS B 1(RX) H 1 , 1(X). I.ITENBERG A MONTRE QUE CETTE CONJECTURE EST FAUSSE POUR LES SURFACES ALGEBRIQUES DE DEGRE M 10 DANS RP 3 (LA CONJECTURE EST VRAIE POUR M 4). LES SURFACES PRESENTEES SONT OBTENUES EN UTILISANT LA METHODE DE VIRO DE CONSTRUCTION DE VARIETES ALGEBRIQUES REELLES DANS DES VARIETES TORIQUES PROJECTIVES. DANS UNE PREMIERE PARTIE, NOUS PRESENTONS TROIS VERSIONS DE CETTE METHODE ET RAPPELONS QUELQUES PROPRIETES DES VARIETES TORIQUES. LA DEUXIEME PARTIE EST CONSACREE AUX SURFACES DANS RP 3 CONSTRUITES AU MOYEN DU PATCHWORK COMBINATOIRE. CES SURFACES SONT APPELEES T-SURFACES. NOUS MONTRONS L'EXISTENCE DE CONTRE-EXEMPLES A LA CONJECTURE DE VIRO PARMI LES T-SURFACES DE DEGRE 8. NOUS CONSTRUISONS UNE FAMILLE DE T-SURFACES X DE DEGRE M DANS RP 3 TELLES QUE B 0(RX) = M 3/4 + 0(M 2). IL SEMBLE QUE CES VALEURS DE B 0(RX) SOIENT ASYMPTOTIQUEMENT MAXIMALES POUR LES T-SURFACES DE DEGRE M DANS RP 3. FINALEMENT NOUS DONNONS UNE CONSTRUCTION DE T-SURFACES QUI SONT MAXIMALES DU POINT DE VUE DE L'INEGALITE DE SMITH-THOM. E.HORIKAWA A ETUDIE LES DEFORMATIONS DES SURFACES COMPLEXES DE DEGRE 5 ET 6 DANS CP 3. DANS LA TROISIEME PARTIE, NOUS UTILISONS DES VERSIONS EQUIVARIANTES DE CES DEFORMATIONS. NOUS CONSTRUISONS UNE SURFACE X DE DEGRE 6 DANS RP 3 TELLE QUE B 1(RX) > H 1 , 1(X). NOUS CONSIDERONS ENSUITE LA CLASSE DES SURFACES NUMERIQUES REELLES DE DEGRE 5. EN PARTICULIER, CETTE CLASSE CONTIENT CELLE DES SURFACES DE DEGRE 5 DANS RP 3. NOUS MONTRONS L'EXISTENCE D'UNE SURFACE X NUMERIQUE REELLE DE DEGRE 5 TELLE QUE B 1(RX) = H 1 , 1(X) + 2 = 47. CETTE SURFACE CONSTITUE UN CONTRE-EXEMPLE A LA CONJECTURE DE VIRO ET REALISE LA VALEUR MAXIMALE POSSIBLE DE B 1(RX) DANS LA CLASSE DES SURFACES NUMERIQUES REELLES DE DEGRE 5. NOUS CONSTRUISONS EGALEMENT DANS CETTE CLASSE UNE SURFACE X TELLE QUE B 0(RX) = 23. FINALEMENT, NOUS CONSTRUISONS DES FAMILLES DE SURFACES X DE DEGRE M DANS RP 3 PRODUISANT DE GRANDES VALEURS DE B 0(RX) ET DE B 1(RX) ASYMPTOTIQUEMENT.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/490690202> # CONSTRUCTIONS COMBINATOIRES DE SURFACES ALGEBRIQUES REELLES
    a schema:Book, schema:CreativeWork, bgn:Thesis ;
   bgn:inSupportOf "Thèse de doctorat : Mathématiques et application : Rennes 1 : 1998." ;
   library:oclcnum "490690202" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/fr> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/366024757#Place/s_l> ; # S.l.
   schema:about <http://experiment.worldcat.org/entity/work/data/366024757#Thing/sciences_et_techniques_communes_mathematiques> ; # SCIENCES ET TECHNIQUES COMMUNES : MATHEMATIQUES
   schema:about <http://experiment.worldcat.org/entity/work/data/366024757#Thing/variete_algebrique_variete_complexe_surface_probleme_combinatoire_nombre_betti_methode_viro_conjecture_viro> ; # VARIETE ALGEBRIQUE/VARIETE COMPLEXE/SURFACE/PROBLEME COMBINATOIRE/NOMBRE BETTI/METHODE VIRO/CONJECTURE VIRO
   schema:author <http://experiment.worldcat.org/entity/work/data/366024757#Person/bihan_frederic> ; # FREDERIC BIHAN
   schema:contributor <http://experiment.worldcat.org/entity/work/data/366024757#Organization/universite_de_rennes_1> ; # Université de Rennes 1.
   schema:contributor <http://experiment.worldcat.org/entity/work/data/366024757#Person/itenberg_ilia> ; # Ilia Itenberg
   schema:datePublished "1998" ;
   schema:description "UNE SURFACE ALGEBRIQUE REELLE EST UNE SURFACE COMPLEXE X EQUIPEE D'UNE INVOLUTION ANTIHOLOMORPHE C : X X. L'ENSEMBLE RX DES POINTS FIXES DE C EST APPELE ENSEMBLE DES POINTS REELS DE LA SURFACE. LE TRAVAIL PRESENTE EST MOTIVE PAR UNE QUESTION IMPORTANTE EN TOPOLOGIE DES SURFACES ALGEBRIQUES REELLES : POUR UNE SURFACE COMPLEXE X DONNEE, QUELLES SONT LES VALEURS MAXIMALES POSSIBLES DES NOMBRES DE BETTI B 0(RX) ET B 1(RX) ? UNE APPLICATION STANDARD DES INEGALITES DE COMESSATI ET DE SMITH-THOM PERMET D'OBTENIR DES BORNES SUPERIEURES POUR CES NOMBRES DE BETTI. D'AUTRE PART, O.VIRO PROPOSA UNE CONJECTURE GENERALISANT CELLE DE RAGSDALE POUR LES COURBES DANS RP 2 : SI X EST UNE SURFACE COMPACTE NON SINGULIERE ET SIMPLEMENT CONNEXE ALORS B 1(RX) H 1 , 1(X). I.ITENBERG A MONTRE QUE CETTE CONJECTURE EST FAUSSE POUR LES SURFACES ALGEBRIQUES DE DEGRE M 10 DANS RP 3 (LA CONJECTURE EST VRAIE POUR M 4). LES SURFACES PRESENTEES SONT OBTENUES EN UTILISANT LA METHODE DE VIRO DE CONSTRUCTION DE VARIETES ALGEBRIQUES REELLES DANS DES VARIETES TORIQUES PROJECTIVES. DANS UNE PREMIERE PARTIE, NOUS PRESENTONS TROIS VERSIONS DE CETTE METHODE ET RAPPELONS QUELQUES PROPRIETES DES VARIETES TORIQUES. LA DEUXIEME PARTIE EST CONSACREE AUX SURFACES DANS RP 3 CONSTRUITES AU MOYEN DU PATCHWORK COMBINATOIRE. CES SURFACES SONT APPELEES T-SURFACES. NOUS MONTRONS L'EXISTENCE DE CONTRE-EXEMPLES A LA CONJECTURE DE VIRO PARMI LES T-SURFACES DE DEGRE 8. NOUS CONSTRUISONS UNE FAMILLE DE T-SURFACES X DE DEGRE M DANS RP 3 TELLES QUE B 0(RX) = M 3/4 + 0(M 2). IL SEMBLE QUE CES VALEURS DE B 0(RX) SOIENT ASYMPTOTIQUEMENT MAXIMALES POUR LES T-SURFACES DE DEGRE M DANS RP 3. FINALEMENT NOUS DONNONS UNE CONSTRUCTION DE T-SURFACES QUI SONT MAXIMALES DU POINT DE VUE DE L'INEGALITE DE SMITH-THOM. E.HORIKAWA A ETUDIE LES DEFORMATIONS DES SURFACES COMPLEXES DE DEGRE 5 ET 6 DANS CP 3. DANS LA TROISIEME PARTIE, NOUS UTILISONS DES VERSIONS EQUIVARIANTES DE CES DEFORMATIONS. NOUS CONSTRUISONS UNE SURFACE X DE DEGRE 6 DANS RP 3 TELLE QUE B 1(RX) > H 1 , 1(X). NOUS CONSIDERONS ENSUITE LA CLASSE DES SURFACES NUMERIQUES REELLES DE DEGRE 5. EN PARTICULIER, CETTE CLASSE CONTIENT CELLE DES SURFACES DE DEGRE 5 DANS RP 3. NOUS MONTRONS L'EXISTENCE D'UNE SURFACE X NUMERIQUE REELLE DE DEGRE 5 TELLE QUE B 1(RX) = H 1 , 1(X) + 2 = 47. CETTE SURFACE CONSTITUE UN CONTRE-EXEMPLE A LA CONJECTURE DE VIRO ET REALISE LA VALEUR MAXIMALE POSSIBLE DE B 1(RX) DANS LA CLASSE DES SURFACES NUMERIQUES REELLES DE DEGRE 5. NOUS CONSTRUISONS EGALEMENT DANS CETTE CLASSE UNE SURFACE X TELLE QUE B 0(RX) = 23. FINALEMENT, NOUS CONSTRUISONS DES FAMILLES DE SURFACES X DE DEGRE M DANS RP 3 PRODUISANT DE GRANDES VALEURS DE B 0(RX) ET DE B 1(RX) ASYMPTOTIQUEMENT."@fr ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/366024757> ;
   schema:inLanguage "fr" ;
   schema:name "CONSTRUCTIONS COMBINATOIRES DE SURFACES ALGEBRIQUES REELLES"@fr ;
   schema:numberOfPages "120" ;
   schema:productID "490690202" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/490690202#PublicationEvent/s_l_s_n_1998> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/366024757#Agent/s_n> ; # [s.n.]
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/490690202> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/366024757#Organization/universite_de_rennes_1> # Université de Rennes 1.
    a schema:Organization ;
   schema:name "Université de Rennes 1." ;
    .

<http://experiment.worldcat.org/entity/work/data/366024757#Person/bihan_frederic> # FREDERIC BIHAN
    a schema:Person ;
   schema:familyName "BIHAN" ;
   schema:givenName "FREDERIC." ;
   schema:name "FREDERIC BIHAN" ;
    .

<http://experiment.worldcat.org/entity/work/data/366024757#Person/itenberg_ilia> # Ilia Itenberg
    a schema:Person ;
   schema:familyName "Itenberg" ;
   schema:givenName "Ilia" ;
   schema:name "Ilia Itenberg" ;
    .

<http://experiment.worldcat.org/entity/work/data/366024757#Thing/sciences_et_techniques_communes_mathematiques> # SCIENCES ET TECHNIQUES COMMUNES : MATHEMATIQUES
    a schema:Thing ;
   schema:name "SCIENCES ET TECHNIQUES COMMUNES : MATHEMATIQUES" ;
    .

<http://experiment.worldcat.org/entity/work/data/366024757#Thing/variete_algebrique_variete_complexe_surface_probleme_combinatoire_nombre_betti_methode_viro_conjecture_viro> # VARIETE ALGEBRIQUE/VARIETE COMPLEXE/SURFACE/PROBLEME COMBINATOIRE/NOMBRE BETTI/METHODE VIRO/CONJECTURE VIRO
    a schema:Thing ;
   schema:name "VARIETE ALGEBRIQUE/VARIETE COMPLEXE/SURFACE/PROBLEME COMBINATOIRE/NOMBRE BETTI/METHODE VIRO/CONJECTURE VIRO" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.