přejít na obsah
Contemporary evolution strategies Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Contemporary evolution strategies

Autor Thomas Bäck; Christophe Foussette; Peter Krause
Vydavatel: Heidelberg : Springer, 2013.
Edice: Natural computing series
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: Electronic books
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Thomas Bäck; Christophe Foussette; Peter Krause
ISBN: 9783642401374 3642401376 3642401368 9783642401367
OCLC číslo: 861786380
Popis: 1 online resource (xiii, 90 pages) : illustrations (some color).
Obsahy: Evolution Strategies --
Taxonomy of Evolution Strategies --
Empirical Analysis --
Summary.
Název edice: Natural computing series
Odpovědnost: Thomas Bäck, Christophe Foussette, Peter Krause.
Více informací:

Anotace:

Contemporary Evolution Strategies  Přečíst více...

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.
Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/861786380>
library:oclcnum"861786380"
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
<http://id.worldcat.org/fast/917347>
rdf:typeschema:Intangible
schema:name"Evolutionary programming (Computer science)"@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2013"
schema:description"Evolution Strategies -- Taxonomy of Evolution Strategies -- Empirical Analysis -- Summary."@en
schema:description"Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors' focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1412865007>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Contemporary evolution strategies"@en
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647374>
schema:workExample
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.