zum Inhalt wechseln
Contemporary evolution strategies Titelvorschau
SchließenTitelvorschau
Prüfung…

Contemporary evolution strategies

Verfasser/in: Thomas Bäck; Christophe Foussette; Peter Krause
Verlag: Heidelberg : Springer, 2013.
Serien: Natural computing series
Ausgabe/Format   E-Book : Dokument : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Gattung/Form: Electronic books
Medientyp: Dokument, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Thomas Bäck; Christophe Foussette; Peter Krause
ISBN: 9783642401374 3642401376 3642401368 9783642401367
OCLC-Nummer: 861786380
Beschreibung: 1 online resource (xiii, 90 pages) : illustrations (some color).
Inhalt: Evolution Strategies --
Taxonomy of Evolution Strategies --
Empirical Analysis --
Summary.
Serientitel: Natural computing series
Verfasserangabe: Thomas Bäck, Christophe Foussette, Peter Krause.
Weitere Informationen:

Abstract:

Contemporary Evolution Strategies  Weiterlesen…

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/861786380>
library:oclcnum"861786380"
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
<http://id.worldcat.org/fast/917347>
rdf:typeschema:Intangible
schema:name"Evolutionary programming (Computer science)"@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2013"
schema:description"Evolution Strategies -- Taxonomy of Evolution Strategies -- Empirical Analysis -- Summary."@en
schema:description"Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors' focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1412865007>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Contemporary evolution strategies"@en
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647374>
schema:workExample
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.