omitir hasta el contenido
Contemporary evolution strategies Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Contemporary evolution strategies

Autor: Thomas Bäck; Christophe Foussette; Peter Krause
Editorial: Heidelberg : Springer, 2013.
Serie: Natural computing series
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Thomas Bäck; Christophe Foussette; Peter Krause
ISBN: 9783642401374 3642401376 3642401368 9783642401367
Número OCLC: 861786380
Descripción: 1 online resource (xiii, 90 pages) : illustrations (some color).
Contenido: Evolution Strategies --
Taxonomy of Evolution Strategies --
Empirical Analysis --
Summary.
Título de la serie: Natural computing series
Responsabilidad: Thomas Bäck, Christophe Foussette, Peter Krause.
Más información:

Resumen:

Contemporary Evolution Strategies  Leer más

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/861786380>
library:oclcnum"861786380"
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
<http://id.worldcat.org/fast/917347>
rdf:typeschema:Intangible
schema:name"Evolutionary programming (Computer science)"@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2013"
schema:description"Evolution Strategies -- Taxonomy of Evolution Strategies -- Empirical Analysis -- Summary."@en
schema:description"Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors' focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1412865007>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Contemporary evolution strategies"@en
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647374>
schema:workExample
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.