doorgaan naar inhoud
Contemporary evolution strategies Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Contemporary evolution strategies

Auteur: Thomas Bäck; Christophe Foussette; Peter Krause
Uitgever: Heidelberg : Springer, 2013.
Serie: Natural computing series
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Thomas Bäck; Christophe Foussette; Peter Krause
ISBN: 9783642401374 3642401376
OCLC-nummer: 861786380
Beschrijving: 1 online resource (xiii, 90 pages) : illustrations (some color).
Inhoud: Evolution Strategies --
Taxonomy of Evolution Strategies --
Empirical Analysis --
Summary.
Serietitel: Natural computing series
Verantwoordelijkheid: Thomas Bäck, Christophe Foussette, Peter Krause.
Meer informatie:

Fragment:

Contemporary Evolution Strategies  Meer lezen...

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/861786380>
library:oclcnum"861786380"
library:placeOfPublication
owl:sameAs<info:oclcnum/861786380>
rdf:typeschema:Book
schema:about
<http://id.worldcat.org/fast/917347>
rdf:typeschema:Intangible
schema:name"Evolutionary programming (Computer science)"@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2013"
schema:description"Evolution Strategies -- Taxonomy of Evolution Strategies -- Empirical Analysis -- Summary."@en
schema:description"Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors' focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1412865007>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Contemporary evolution strategies"@en
schema:url
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647374>
schema:workExample
schema:workExample

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.