pular para conteúdo
Contemporary evolution strategies Ver prévia deste item
FecharVer prévia deste item
Checando...

Contemporary evolution strategies

Autor: Thomas Bäck; Christophe Foussette; Peter Krause
Editora: Heidelberg : Springer, 2013.
Séries: Natural computing series
Edição/Formato   e-book : Documento : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia on-line

Links para este item

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Gênero/Forma: Electronic books
Tipo de Material: Documento, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Thomas Bäck; Christophe Foussette; Peter Krause
ISBN: 9783642401374 3642401376
Número OCLC: 861786380
Descrição: 1 online resource (xiii, 90 pages) : illustrations (some color).
Conteúdos: Evolution Strategies --
Taxonomy of Evolution Strategies --
Empirical Analysis --
Summary.
Título da Série: Natural computing series
Responsabilidade: Thomas Bäck, Christophe Foussette, Peter Krause.
Mais informações:

Resumo:

Contemporary Evolution Strategies  Ler mais...

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/861786380>
library:oclcnum"861786380"
library:placeOfPublication
owl:sameAs<info:oclcnum/861786380>
rdf:typeschema:Book
schema:about
<http://id.worldcat.org/fast/917347>
rdf:typeschema:Intangible
schema:name"Evolutionary programming (Computer science)"@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2013"
schema:description"Evolution Strategies -- Taxonomy of Evolution Strategies -- Empirical Analysis -- Summary."@en
schema:description"Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors' focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1412865007>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Contemporary evolution strategies"@en
schema:url
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647374>
schema:workExample
schema:workExample

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.