aller au contenu
CONTRIBUTION A L'ETUDE MATHEMATIQUE DES EQUATIONS DE BOLTZMANN ET DE LANDAU EN THEORIE CINETIQUE DES GAZ ET DES PLASMAS Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

CONTRIBUTION A L'ETUDE MATHEMATIQUE DES EQUATIONS DE BOLTZMANN ET DE LANDAU EN THEORIE CINETIQUE DES GAZ ET DES PLASMAS

Auteur : Cédric Villani; Pierre-Louis Lions; Université Paris-Dauphine.
Éditeur : [S.l.] : [s.n.], 1998.
Dissertation : Thèse de doctorat : Mathématiques : Paris 9 : 1998.
Édition/format :   Thèse/dissertation : Thèse/mémoire : FrançaisVoir toutes les éditions et les formats
Base de données :WorldCat
Résumé :
NOUS ETUDIONS DES EQUATIONS CINETIQUES DE LA FORME F/T + V . *#XF = Q(F,F), T0, X ,R#N, V , R#N, QUI DECRIVENT L'EVOLUTION D'UN GAZ OU D'UN PLASMA DANS LEQUEL LES PARTICULES SUBISSENT DES COLLISIONS MODELISEES PAR L'OPERATEUR Q, DIT - DE BOLTZMANN : Q(F,F) DV#* D B(V V#*, ) (F'F'#* FF#*), - OU DE LANDAU : Q(F,F) = /V#I DV#*A#I#J(V V#*) (F#*F/V#J FF#*/V#*#,#J). LES TROIS PREMIERES PARTIES DE CETTE THESE CONCERNENT  Lire la suite...
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Type d’ouvrage : Thèse/mémoire
Format : Livre
Tous les auteurs / collaborateurs : Cédric Villani; Pierre-Louis Lions; Université Paris-Dauphine.
Numéro OCLC : 490370779
Notes : Texte en anglais et en français.
Description : 1 vol. (456 p.) : fig. ; 30 cm.
Responsabilité : CEDRIC VILLANI ; SOUS LA DIRECTION DE PIERRE-LOUIS LIONS.

Résumé :

NOUS ETUDIONS DES EQUATIONS CINETIQUES DE LA FORME F/T + V . *#XF = Q(F,F), T0, X ,R#N, V , R#N, QUI DECRIVENT L'EVOLUTION D'UN GAZ OU D'UN PLASMA DANS LEQUEL LES PARTICULES SUBISSENT DES COLLISIONS MODELISEES PAR L'OPERATEUR Q, DIT - DE BOLTZMANN : Q(F,F) DV#* D B(V V#*, ) (F'F'#* FF#*), - OU DE LANDAU : Q(F,F) = /V#I DV#*A#I#J(V V#*) (F#*F/V#J FF#*/V#*#,#J). LES TROIS PREMIERES PARTIES DE CETTE THESE CONCERNENT LES EQUATIONS HOMOGENES (INDEPENDANTES DE X) #TF = Q(F,F). ON INSISTE PARTICULIEREMENT SUR DEUX POINTS : LES COLLISIONS RASANTES ET LA DISSIPATION D'ENTROPIE. DANS LA PREMIERE PARTIE, ON ETUDIE LE PROBLEME DE CAUCHY ASSOCIE AUX EQUATIONS DE BOLTZMANN ET DE LANDAU HOMOGENES (POUR DES SECTIONS EFFICACES REALISTES ET EVENTUELLEMENT SINGULIERES), DES PROPRIETES DE REGULARITE DES SOLUTIONS, AINSI QUE L'ASYMPTOTIQUE DES COLLISIONS RASANTES QUI PERMET DE PASSER D'UNE EQUATION A L'AUTRE. LA DEUXIEME PARTIE EST CONSACREE AU CAS PARTICULIER DES MOLECULES MAXWELLIENNES. SOUS CETTE HYPOTHESE, ON EFFECTUE UNE ETUDE DETAILLEE DU PROBLEME DE CAUCHY ET DU RETOUR VERS L'EQUILIBRE, AINSI QUE DES LIENS ENTRE THEORIE CINETIQUE ET THEORIE DE L'INFORMATION. DANS LA TROISIEME PARTIE, ON UTILISE LES RESULTATS PRECEDENTS POUR OBTENIR DES ESTIMATIONS EXPLICITES SUR LA VITESSE DE RETOUR VERS L'EQUILIBRE DANS LE CAS GENERAL. DANS LA QUATRIEME PARTIE, ON OBTIENT DES RESULTATS PARTIELS SUR LE PROBLEME DE CAUCHY POUR L'EQUATION DE LANDAU INHOMOGENE, ET QUELQUES ESTIMATIONS NOUVELLES SUR L'EQUATION DE BOLTZMANN INHOMOGENE. ENFIN, DANS LA CINQUIEME PARTIE, ON ETABLIT DIVERSES FORMES CONSERVATIVES DE L'OPERATEUR DE BOLTZMANN, AVEC APPLICATION A L'ASYMPTOTIQUE DES COLLISIONS RASANTES.

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.
Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/490370779>
library:oclcnum"490370779"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/490370779>
rdf:typej.2:Thesis
rdf:typeschema:Book
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1998"
schema:description"NOUS ETUDIONS DES EQUATIONS CINETIQUES DE LA FORME F/T + V . *#XF = Q(F,F), T0, X ,R#N, V , R#N, QUI DECRIVENT L'EVOLUTION D'UN GAZ OU D'UN PLASMA DANS LEQUEL LES PARTICULES SUBISSENT DES COLLISIONS MODELISEES PAR L'OPERATEUR Q, DIT - DE BOLTZMANN : Q(F,F) DV#* D B(V V#*, ) (F'F'#* FF#*), - OU DE LANDAU : Q(F,F) = /V#I DV#*A#I#J(V V#*) (F#*F/V#J FF#*/V#*#,#J). LES TROIS PREMIERES PARTIES DE CETTE THESE CONCERNENT LES EQUATIONS HOMOGENES (INDEPENDANTES DE X) #TF = Q(F,F). ON INSISTE PARTICULIEREMENT SUR DEUX POINTS : LES COLLISIONS RASANTES ET LA DISSIPATION D'ENTROPIE. DANS LA PREMIERE PARTIE, ON ETUDIE LE PROBLEME DE CAUCHY ASSOCIE AUX EQUATIONS DE BOLTZMANN ET DE LANDAU HOMOGENES (POUR DES SECTIONS EFFICACES REALISTES ET EVENTUELLEMENT SINGULIERES), DES PROPRIETES DE REGULARITE DES SOLUTIONS, AINSI QUE L'ASYMPTOTIQUE DES COLLISIONS RASANTES QUI PERMET DE PASSER D'UNE EQUATION A L'AUTRE. LA DEUXIEME PARTIE EST CONSACREE AU CAS PARTICULIER DES MOLECULES MAXWELLIENNES. SOUS CETTE HYPOTHESE, ON EFFECTUE UNE ETUDE DETAILLEE DU PROBLEME DE CAUCHY ET DU RETOUR VERS L'EQUILIBRE, AINSI QUE DES LIENS ENTRE THEORIE CINETIQUE ET THEORIE DE L'INFORMATION. DANS LA TROISIEME PARTIE, ON UTILISE LES RESULTATS PRECEDENTS POUR OBTENIR DES ESTIMATIONS EXPLICITES SUR LA VITESSE DE RETOUR VERS L'EQUILIBRE DANS LE CAS GENERAL. DANS LA QUATRIEME PARTIE, ON OBTIENT DES RESULTATS PARTIELS SUR LE PROBLEME DE CAUCHY POUR L'EQUATION DE LANDAU INHOMOGENE, ET QUELQUES ESTIMATIONS NOUVELLES SUR L'EQUATION DE BOLTZMANN INHOMOGENE. ENFIN, DANS LA CINQUIEME PARTIE, ON ETABLIT DIVERSES FORMES CONSERVATIVES DE L'OPERATEUR DE BOLTZMANN, AVEC APPLICATION A L'ASYMPTOTIQUE DES COLLISIONS RASANTES."
schema:exampleOfWork<http://worldcat.org/entity/work/id/368996751>
schema:name"CONTRIBUTION A L'ETUDE MATHEMATIQUE DES EQUATIONS DE BOLTZMANN ET DE LANDAU EN THEORIE CINETIQUE DES GAZ ET DES PLASMAS"
schema:publisher
schema:url

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.