skip to content
Convergence Methods for Double Sequences and Applications Preview this item
ClosePreview this item
Checking...

Convergence Methods for Double Sequences and Applications

Author: M Mursaleen; S A Mohiuddine
Publisher: New Delhi : Springer, 2014.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book exclusively deals with the study of almost convergence and statistical convergence of double sequences. The notion of almost convergence is perhaps the most useful notion in order to obtain a weak limit of a bounded non-convergent sequence. There is another notion of convergence known as the statistical convergence, introduced by H. Fast, which is an extension of the usual concept of sequential limits.  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Printed edition:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: M Mursaleen; S A Mohiuddine
ISBN: 9788132216117 8132216113 8132216105 9788132216100
OCLC Number: 863049071
Description: 1 online resource (ix, 171 pages)
Contents: Chapter 1: Almost and statistical convergence of ordinary sequences: A preview --
Chapter 2: Almost convergence of double sequences --
Chapter 3: Almost regular matrices --
Chapter 4: Absolute almost convergence of double sequences --
Chapter 5: Almost convergence and core theorems --
Chapter 6: Application of almost convergence in approximation theorems for functions of two variables --
Chapter 7: Statistical convergence of double sequences --
Chapter 8: Statistical approximation of positive linear operators --
Chapter 9: Double series and convergence tests.
Responsibility: M. Mursaleen, S.A. Mohiuddine.

Abstract:

This book's dedicated focus on the `almost' convergence and statistical convergence of double sequences demystifies the concept using a host of revealing examples, highlighting the application of  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/863049071> # Convergence Methods for Double Sequences and Applications
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "863049071" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/ii> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1784237468#Topic/mathematics> ; # Mathematics
    schema:about <http://id.worldcat.org/fast/877195> ; # Convergence
    schema:about <http://experiment.worldcat.org/entity/work/data/1784237468#Topic/mathematics_mathematical_analysis> ; # MATHEMATICS--Mathematical Analysis
    schema:about <http://dewey.info/class/515.24/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1784237468#Topic/mathematics_calculus> ; # MATHEMATICS--Calculus
    schema:author <http://viaf.org/viaf/305744461> ; # S. A. Mohiuddine
    schema:author <http://viaf.org/viaf/307475207> ; # M. Mursaleen
    schema:bookFormat schema:EBook ;
    schema:datePublished "2014" ;
    schema:description "Chapter 1: Almost and statistical convergence of ordinary sequences: A preview -- Chapter 2: Almost convergence of double sequences -- Chapter 3: Almost regular matrices -- Chapter 4: Absolute almost convergence of double sequences -- Chapter 5: Almost convergence and core theorems -- Chapter 6: Application of almost convergence in approximation theorems for functions of two variables -- Chapter 7: Statistical convergence of double sequences -- Chapter 8: Statistical approximation of positive linear operators -- Chapter 9: Double series and convergence tests."@en ;
    schema:description "This book exclusively deals with the study of almost convergence and statistical convergence of double sequences. The notion of almost convergence is perhaps the most useful notion in order to obtain a weak limit of a bounded non-convergent sequence. There is another notion of convergence known as the statistical convergence, introduced by H. Fast, which is an extension of the usual concept of sequential limits. This concept arises as an example of convergence in density which is also studied as a summability method. Even unbounded sequences can be dealt with by using this method. The book also discusses the applications of these non-matrix methods in approximation theory. Written in a self-contained style, the book discusses in detail the methods of almost convergence and statistical convergence for double sequences along with applications and suitable examples. The last chapter is devoted to the study convergence of double series and describes various convergence tests analogous to those of single sequences. In addition to applications in approximation theory, the results are expected to find application in many other areas of pure and applied mathematics such as mathematical analysis, probability, fixed point theory and statistics."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1784237468> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1784237468#CreativeWork/> ;
    schema:name "Convergence Methods for Double Sequences and Applications"@en ;
    schema:productID "863049071" ;
    schema:url <http://www.myilibrary.com?id=559134> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-81-322-1610-0> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-81-322-1610-0> ;
    schema:url <http://site.ebrary.com/id/10784761> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=653016> ;
    schema:url <https://ebookcentral.proquest.com/lib/buffalo/detail.action?docID=1538926> ;
    schema:url <http://dx.doi.org/10.1007/978-81-322-1611-7> ;
    schema:url <http://link.springer.com/10.1007/978-81-322-1611-7> ;
    schema:workExample <http://dx.doi.org/10.1007/978-81-322-1611-7> ;
    schema:workExample <http://worldcat.org/isbn/9788132216117> ;
    schema:workExample <http://worldcat.org/isbn/9788132216100> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/863049071> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1784237468#Topic/mathematics_calculus> # MATHEMATICS--Calculus
    a schema:Intangible ;
    schema:name "MATHEMATICS--Calculus"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1784237468#Topic/mathematics_mathematical_analysis> # MATHEMATICS--Mathematical Analysis
    a schema:Intangible ;
    schema:name "MATHEMATICS--Mathematical Analysis"@en ;
    .

<http://id.worldcat.org/fast/877195> # Convergence
    a schema:Intangible ;
    schema:name "Convergence"@en ;
    .

<http://viaf.org/viaf/305744461> # S. A. Mohiuddine
    a schema:Person ;
    schema:familyName "Mohiuddine" ;
    schema:givenName "S. A." ;
    schema:name "S. A. Mohiuddine" ;
    .

<http://viaf.org/viaf/307475207> # M. Mursaleen
    a schema:Person ;
    schema:familyName "Mursaleen" ;
    schema:givenName "M." ;
    schema:name "M. Mursaleen" ;
    .

<http://worldcat.org/entity/work/data/1784237468#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/863049071> ; # Convergence Methods for Double Sequences and Applications
    .

<http://worldcat.org/isbn/9788132216100>
    a schema:ProductModel ;
    schema:isbn "8132216105" ;
    schema:isbn "9788132216100" ;
    .

<http://worldcat.org/isbn/9788132216117>
    a schema:ProductModel ;
    schema:isbn "8132216113" ;
    schema:isbn "9788132216117" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.