跳到内容
The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements 预览资料
关闭预览资料
正在查...

The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements

著者: Brown, D.W.; Los Alamos National Laboratory.; United States. Department of Energy. Assistant Secretary for Human Resources and Administration.; United States. Department of Energy. Office of Scientific and Technical Information.
出版商: Washington, DC : United States. Dept. of Energy. Assistant Secretary for Human Resources and Administration ; Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1997.
版本/格式:   电子图书 : 文献 : 会议刊物 : 国家级的政府刊物 : 英语
数据库:WorldCat
提要:
The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is  再读一些...
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

在线查找

与资料的链接

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

材料类型: 会议刊物, 文献, 政府刊物, 国家级的政府刊物, 互联网资源
文件类型: 互联网资源, 计算机文档
所有的著者/提供者: Brown, D.W.; Los Alamos National Laboratory.; United States. Department of Energy. Assistant Secretary for Human Resources and Administration.; United States. Department of Energy. Office of Scientific and Technical Information.
OCLC号码: 68421393
注意: Published through the Information Bridge: DOE Scientific and Technical Information.
10/01/1997.
"La-ur--97-2077."
"Conf-970701--"
"DE98000265."
32. intersociety energy conversion engineering conference, Honolulu, HI (United States), 27 Jul - 2 Aug 1997.
Brown, D.W.
描述: 7 pages : digital, PDF file.

摘要:

The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200° to 220°c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/68421393>
library:oclcnum"68421393"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/68421393>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:author
schema:bookFormatschema:EBook
schema:contributor
<http://viaf.org/viaf/156226710>
rdf:typeschema:Organization
schema:name"United States. Department of Energy. Assistant Secretary for Human Resources and Administration."
schema:contributor
schema:contributor
<http://viaf.org/viaf/305307678>
rdf:typeschema:Organization
schema:name"United States. Department of Energy. Office of Scientific and Technical Information."
schema:datePublished"1997"
schema:description"The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200° to 220°c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/51764954>
schema:inLanguage"en"
schema:name"The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements"@en
schema:publisher
schema:publisher
schema:url<http://www.osti.gov/servlets/purl/538043-8RmLI4/webviewable/>
schema:url

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.