skip to content
Convex Analysis and Nonlinear Geometric Elliptic Equations Preview this item
ClosePreview this item
Checking...

Convex Analysis and Nonlinear Geometric Elliptic Equations

Author: Ilya J Bakelman
Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 1994.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book is suitable as a graduate text and reference work in the areas of convex functions and bodies, global geometric problems, and nonlinear elliptic boundary value problems with special emphasis on Monge-Ampere equations. The theory of convex functions and bodies is presented first so that it can be used to study the other areas. In fact, the author makes a point of emphasizing the interrelationship of all the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Ilya J Bakelman
ISBN: 9783642698811 3642698816
OCLC Number: 851703060
Description: 1 online resource (xxi, 510 pages)
Contents: I. Elements of Convex Analysis --
1. Convex Bodies and Hypersurfaces --
2. Mixed Volumes. Minkowski Problem. Selected Global Problems in Geometric Partial Differential Equations --
II. Geometric Theory of Elliptic Solutions of Monge-Ampere Equations --
3. Generalized Solutions of N-Dimensional Monge-Ampere Equations --
4. Variational Problems and Generalized Elliptic Solutions of Monge-Ampere Equations --
5. Non-Compact Problems for Elliptic Solutions of Monge-Ampere Equations --
6. Smooth Elliptic Solutions of Monge-Ampere Equations --
III. Geometric Methods in Elliptic Equations of Second Order. Applications to Calculus of Variations, Differential Geometry and Applied Mathematics. --
7. Geometric Concepts and Methods in Nonlinear Elliptic Euler-Lagrange Equations --
8. The Geometric Maximum Principle for General Non-Divergent Quasilinear Elliptic Equations.
Responsibility: by Ilya J. Bakelman.

Abstract:

Investigations in modem nonlinear analysis rely on ideas, methods and prob- lems from various fields of mathematics, mechanics, physics and other applied sciences.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/851703060> # Convex Analysis and Nonlinear Geometric Elliptic Equations
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "851703060" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/33415378#Place/berlin_heidelberg> ; # Berlin, Heidelberg
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://dewey.info/class/515/e23/> ;
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://id.worldcat.org/fast/943477> ; # Global differential geometry
    schema:about <http://id.worldcat.org/fast/943472> ; # Global analysis (Mathematics)
    schema:about <http://id.worldcat.org/fast/1012104> ; # Mathematical physics
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/109048290> ; # Ilya J. Bakelman
    schema:datePublished "1994" ;
    schema:description "This book is suitable as a graduate text and reference work in the areas of convex functions and bodies, global geometric problems, and nonlinear elliptic boundary value problems with special emphasis on Monge-Ampere equations. The theory of convex functions and bodies is presented first so that it can be used to study the other areas. In fact, the author makes a point of emphasizing the interrelationship of all the areas mentioned above. This enables the reader to obtain a working knowledge of the material. Specific topics of the book include the Minkowski problem, mixed volumes of convex bodies, the Brunn-Minkowski inequalities, geometric maximum principles, the normal mapping of convex hypersurfaces, the R-curvature of convex functions."@en ;
    schema:description "I. Elements of Convex Analysis -- 1. Convex Bodies and Hypersurfaces -- 2. Mixed Volumes. Minkowski Problem. Selected Global Problems in Geometric Partial Differential Equations -- II. Geometric Theory of Elliptic Solutions of Monge-Ampere Equations -- 3. Generalized Solutions of N-Dimensional Monge-Ampere Equations -- 4. Variational Problems and Generalized Elliptic Solutions of Monge-Ampere Equations -- 5. Non-Compact Problems for Elliptic Solutions of Monge-Ampere Equations -- 6. Smooth Elliptic Solutions of Monge-Ampere Equations -- III. Geometric Methods in Elliptic Equations of Second Order. Applications to Calculus of Variations, Differential Geometry and Applied Mathematics. -- 7. Geometric Concepts and Methods in Nonlinear Elliptic Euler-Lagrange Equations -- 8. The Geometric Maximum Principle for General Non-Divergent Quasilinear Elliptic Equations."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/33415378> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/33415378#CreativeWork/> ;
    schema:name "Convex Analysis and Nonlinear Geometric Elliptic Equations"@en ;
    schema:productID "851703060" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/851703060#PublicationEvent/berlin_heidelberg_springer_berlin_heidelberg_1994> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/33415378#Agent/springer_berlin_heidelberg> ; # Springer Berlin Heidelberg
    schema:url <http://dx.doi.org/10.1007/978-3-642-69881-1> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3091013> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-540-13620-0> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-642-69881-1> ;
    schema:workExample <http://worldcat.org/isbn/9783642698811> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/851703060> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/33415378#Agent/springer_berlin_heidelberg> # Springer Berlin Heidelberg
    a bgn:Agent ;
    schema:name "Springer Berlin Heidelberg" ;
    .

<http://experiment.worldcat.org/entity/work/data/33415378#Place/berlin_heidelberg> # Berlin, Heidelberg
    a schema:Place ;
    schema:name "Berlin, Heidelberg" ;
    .

<http://id.worldcat.org/fast/1012104> # Mathematical physics
    a schema:Intangible ;
    schema:name "Mathematical physics"@en ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/943472> # Global analysis (Mathematics)
    a schema:Intangible ;
    schema:name "Global analysis (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/943477> # Global differential geometry
    a schema:Intangible ;
    schema:name "Global differential geometry"@en ;
    .

<http://viaf.org/viaf/109048290> # Ilya J. Bakelman
    a schema:Person ;
    schema:familyName "Bakelman" ;
    schema:givenName "Ilya J." ;
    schema:name "Ilya J. Bakelman" ;
    .

<http://worldcat.org/entity/work/data/33415378#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/851703060> ; # Convex Analysis and Nonlinear Geometric Elliptic Equations
    .

<http://worldcat.org/isbn/9783642698811>
    a schema:ProductModel ;
    schema:isbn "3642698816" ;
    schema:isbn "9783642698811" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.