omitir hasta el contenido
Convexity properties of Hamiltonian group actions Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Convexity properties of Hamiltonian group actions

Autor: Victor Guillemin; Reyer Sjamaar
Editorial: Providence, R.I. : American Mathematical Society, ©2005.
Serie: CRM monograph series, v. 26.
Edición/Formato:   Libro : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
"This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Formato físico adicional: Online version:
Guillemin, Victor, 1937-
Convexity properties of Hamiltonian group actions.
Providence, R.I. : American Mathematical Society, c2005
(OCoLC)625304811
Tipo de material: Recurso en Internet
Tipo de documento: Libro/Texto, Recurso en Internet
Todos autores / colaboradores: Victor Guillemin; Reyer Sjamaar
ISBN: 0821839187 9780821839188
Número OCLC: 61309399
Descripción: iv, 82 p. : ill. ; 27 cm.
Contenido: Ch. 1. The convexity theorem for Hamiltonian G-spaces --
Ch. 2. A constructive proof of the non-abelian convexity theorem --
Ch. 3. Some elementary examples of the convexity theorem --
Ch. 4. Kahler potentials and convexity --
Ch. 5. Applications of the convexity theorem.
Título de la serie: CRM monograph series, v. 26.
Responsabilidad: Victor Guillemin, Reyer Sjamaar.
Más información:

Resumen:

Describes convexity properties of moment mappings in symplectic geometry. This book reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for  Leer más

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/61309399>
library:oclcnum"61309399"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/61309399>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"2005"
schema:creator
schema:datePublished"2005"
schema:exampleOfWork<http://worldcat.org/entity/work/id/462314198>
schema:inLanguage"en"
schema:name"Convexity properties of Hamiltonian group actions"@en
schema:numberOfPages"82"
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/61309399>
schema:reviewBody""This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations."
schema:url
schema:workExample

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.