passa ai contenuti
Convexity properties of Hamiltonian group actions Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Convexity properties of Hamiltonian group actions

Autore: Victor Guillemin; Reyer Sjamaar
Editore: Providence, R.I. : American Mathematical Society, ©2005.
Serie: CRM monograph series, v. 26.
Edizione/Formato:   Libro : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:
"This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Informazioni aggiuntive sul formato: Online version:
Guillemin, Victor, 1937-
Convexity properties of Hamiltonian group actions.
Providence, R.I. : American Mathematical Society, c2005
(OCoLC)625304811
Tipo materiale: Risorsa internet
Tipo documento: Book, Internet Resource
Tutti gli autori / Collaboratori: Victor Guillemin; Reyer Sjamaar
ISBN: 0821839187 9780821839188
Numero OCLC: 61309399
Descrizione: iv, 82 p. : ill. ; 27 cm.
Contenuti: Ch. 1. The convexity theorem for Hamiltonian G-spaces --
Ch. 2. A constructive proof of the non-abelian convexity theorem --
Ch. 3. Some elementary examples of the convexity theorem --
Ch. 4. Kahler potentials and convexity --
Ch. 5. Applications of the convexity theorem.
Titolo della serie: CRM monograph series, v. 26.
Responsabilità: Victor Guillemin, Reyer Sjamaar.
Maggiori informazioni:

Abstract:

Describes convexity properties of moment mappings in symplectic geometry. This book reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for  Per saperne di più…

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/61309399>
library:oclcnum"61309399"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/61309399>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"2005"
schema:creator
schema:datePublished"2005"
schema:exampleOfWork<http://worldcat.org/entity/work/id/462314198>
schema:inLanguage"en"
schema:name"Convexity properties of Hamiltonian group actions"@en
schema:numberOfPages"82"
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/61309399>
schema:reviewBody""This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations."
schema:url
schema:workExample

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.