skip to content
Coxeter graphs and towers of algebras Preview this item
ClosePreview this item
Checking...

Coxeter graphs and towers of algebras

Author: Frederick M Goodman; Pierre de La Harpe; Vaughan F R Jones
Publisher: New York : Springer-Verlag, ©1989.
Series: Mathematical Sciences Research Institute publications, 14.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Goodman, Frederick M.
Coxeter graphs and towers of algebras.
New York : Springer-Verlag, ©1989
(OCoLC)622240420
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Frederick M Goodman; Pierre de La Harpe; Vaughan F R Jones
ISBN: 0387969799 9780387969794 3540969799 9783540969792
OCLC Number: 19354790
Description: vii, 288 pages ; 25 cm.
Contents: 1. Matrices over the natural numbers: values of the norm, classification, and variations.- 1.1. Introduction.- 1.2. Proof of Kronecker's theorem.- 1.3. Decomposability and pseudo-equivalence.- 1.4. Graphs with norms no larger than 2.- 1.5. The set E of norms of graphs and integral matrices.- 2. Towers of multi-matrix algebras.- 2.1. Introduction.- 2.2. Commutant and bicommutant.- 2.3. Inclusion matrix and Bratteli diagram for inclusions of multi-matrix algebras.- 2.4. The fundamental construction and towers for multi-matrix algebras.- 2.5. Traces.- 2.6. Conditional expectations.- 2.7. Markov traces on pairs of multi-matrix algebras.- 2.8. The algebras A?,k for generic ?.- 2.9. An approach to the non-generic case.- 2.10. A digression on Hecke algebras.- 2.10.a. The complex Hecke algebra defined by GLn(q) and its Borel subgroup.- 2.10.b. The Hecke algebras Hq,n.- 2.10.c. Complex representations of the symmetric group.- 2.10.d. Irreducible representations of Hq,n for q ? ?.- 2.11. The relationship between A?,n and the Hecke algebras.- 3. Finite von Neumann algebras with finite dimensional centers.- 3.1. Introduction.- 3.2. The coupling constant: definition.- 3.3. The coupling constant: examples.- 3.3.a. Discrete series.- 3.3.b. Factors defined by icc groups.- 3.3.c. W*(?)-modules associated to subrepresentations of ?G.- 3.3.d. The formula dim?(H) = covol(?) d?.- 3.3.e. A digression on the Peterson inner product.- 3.4. Index for subfactors of II1 factors.- 3.5. Inclusions of finite von Neumann algebras with finite dimensional centers.- 3.6. The fundamental construction.- 3.7. Markov traces on EndN(M), a generalization of index.- 4. Commuting squares, subfactors, and the derived tower.- 4.1. Introduction.- 4.2. Commuting squares.- 4.3. Wenzl's index formula.- 4.4. Examples of irreducible pairs of factors of index less than 4, and a lemma of C. Skau.- 4.5. More examples of irreducible paris of factors, and the index value 3 + 31/2.- 4.6. The derived tower and the Coxeter invariant.- 4.7. Examples of derived towers.- 4.7.a. Finite group actions.- 4.7.b. The An Coxeter graphs.- 4.7.c. A general method.- 4.7.d. Some examples of derived towers for index 4 subfactors.- 4.7.e. The tunnel construction.- 4.7.f. The derived tower for R ? R?, when ? > 4.- Appendix I. Classification of Coxeter graphs with spectral radius just beyond the Kronecker range.- I.1. The results.- I.2. Computations of characteristic polynomials for ordinary graphs.- I.3. Proofs of theorems I.1.2 and I.1.3.- Appendix II.a. Complex semisimple algebras and finite dimensional C*-algebras.- Appendix III. Hecke groups and other subgroups of PSL(2,?) generated by parabolic pairs.- References.
Series Title: Mathematical Sciences Research Institute publications, 14.
Responsibility: Frederick M. Goodman, Pierre de La Harpe, Vaughan F.R. Jones.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/19354790> # Coxeter graphs and towers of algebras
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "19354790" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/graphe_coxeter> ; # Graphe Coxeter
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/coxeter_graph> ; # Coxeter-Graph
    schema:about <http://dewey.info/class/512.55/e19/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/algebrenturm> ; # Algebrenturm
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/coxeter_groepen> ; # Coxeter-groepen
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/coxeter_graphes_de> ; # Coxeter, graphes de
    schema:about <http://id.worldcat.org/fast/882059> ; # Coxeter graphs
    schema:about <http://id.worldcat.org/fast/863429> ; # Class field towers
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/corps_de_classe_tour_de> ; # Corps de classe, tour de
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/algebre_von_neumann> ; # Algèbre von Neumann
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/tour_algebre_hecke> ; # Tour algèbre Hecke
    schema:about <http://experiment.worldcat.org/entity/work/data/21166218#Topic/algebre_hecke> ; # Algèbre Hecke
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/22203611> ; # Pierre de La Harpe
    schema:contributor <http://viaf.org/viaf/73925463> ; # Vaughan F. R. Jones
    schema:copyrightYear "1989" ;
    schema:creator <http://viaf.org/viaf/12381935> ; # Frederick M. Goodman
    schema:datePublished "1989" ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/21166218> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/21166218#Series/mathematical_sciences_research_institute_publications> ; # Mathematical Sciences Research Institute publications ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/622240420> ;
    schema:name "Coxeter graphs and towers of algebras"@en ;
    schema:productID "19354790" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/19354790#PublicationEvent/new_york_springer_verlag_1989> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/21166218#Agent/springer_verlag> ; # Springer-Verlag
    schema:url <http://www.gbv.de/dms/hbz/toc/ht003322522.pdf> ;
    schema:workExample <http://worldcat.org/isbn/9783540969792> ;
    schema:workExample <http://worldcat.org/isbn/9780387969794> ;
    umbel:isLike <http://d-nb.info/900366443> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/19354790> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/21166218#Agent/springer_verlag> # Springer-Verlag
    a bgn:Agent ;
    schema:name "Springer-Verlag" ;
    .

<http://experiment.worldcat.org/entity/work/data/21166218#Series/mathematical_sciences_research_institute_publications> # Mathematical Sciences Research Institute publications ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/19354790> ; # Coxeter graphs and towers of algebras
    schema:name "Mathematical Sciences Research Institute publications ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/21166218#Topic/algebre_von_neumann> # Algèbre von Neumann
    a schema:Intangible ;
    schema:name "Algèbre von Neumann"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21166218#Topic/corps_de_classe_tour_de> # Corps de classe, tour de
    a schema:Intangible ;
    schema:name "Corps de classe, tour de"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21166218#Topic/coxeter_graphes_de> # Coxeter, graphes de
    a schema:Intangible ;
    schema:name "Coxeter, graphes de"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/21166218#Topic/tour_algebre_hecke> # Tour algèbre Hecke
    a schema:Intangible ;
    schema:name "Tour algèbre Hecke"@en ;
    .

<http://id.worldcat.org/fast/863429> # Class field towers
    a schema:Intangible ;
    schema:name "Class field towers"@en ;
    .

<http://id.worldcat.org/fast/882059> # Coxeter graphs
    a schema:Intangible ;
    schema:name "Coxeter graphs"@en ;
    .

<http://viaf.org/viaf/12381935> # Frederick M. Goodman
    a schema:Person ;
    schema:familyName "Goodman" ;
    schema:givenName "Frederick M." ;
    schema:name "Frederick M. Goodman" ;
    .

<http://viaf.org/viaf/22203611> # Pierre de La Harpe
    a schema:Person ;
    schema:familyName "La Harpe" ;
    schema:givenName "Pierre de" ;
    schema:name "Pierre de La Harpe" ;
    .

<http://viaf.org/viaf/73925463> # Vaughan F. R. Jones
    a schema:Person ;
    schema:birthDate "1952" ;
    schema:familyName "Jones" ;
    schema:givenName "Vaughan F. R." ;
    schema:name "Vaughan F. R. Jones" ;
    .

<http://worldcat.org/isbn/9780387969794>
    a pto:Acid-free_paper, schema:ProductModel ;
    schema:description "alk. paper" ;
    schema:isbn "0387969799" ;
    schema:isbn "9780387969794" ;
    .

<http://worldcat.org/isbn/9783540969792>
    a schema:ProductModel ;
    schema:isbn "3540969799" ;
    schema:isbn "9783540969792" ;
    .

<http://www.worldcat.org/oclc/622240420>
    a schema:CreativeWork ;
    rdfs:label "Coxeter graphs and towers of algebras." ;
    schema:description "Online version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/19354790> ; # Coxeter graphs and towers of algebras
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.