skip to content
Crystal engineering : a textbook Preview this item
ClosePreview this item
Checking...

Crystal engineering : a textbook

Author: G R Desiraju; Jagadese J Vittal; Arunachalam Ramanan
Publisher: Hackensack, NJ : World Scientific : IISc Press, ©2011.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Summary:
"This book is important because it is the first textbook in an area that has become very popular in recent times. There are around 250 research groups in crystal engineering worldwide today. The subject has been researched for around 40 years but there is still no textbook at the level of senior undergraduates and beginning PhD students. This book is expected to fill this gap.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Textbooks
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: G R Desiraju; Jagadese J Vittal; Arunachalam Ramanan
ISBN: 9789814366861 9814366862 9789814338752 9814338753
OCLC Number: 739831025
Description: xiv, 216 pages : illustrations ; 28 cm
Contents: 1. Crystal Engineering --
1.1.X-ray Crystallography --
1.2.Organic Solid State Chemistry --
1.3. The Crystal as a Supramolecular Entity --
1.4. Modern Crystal Engineering --
1.4.1. Horizontal and Vertical Divisions of Chemistry --
1.4.2.Organic Crystal Engineering --
1.4.3. Metal-Organic Crystal Engineering --
1.4.4. Properties of Crystals --
2. Intermolecular Interactions --
2.1. General Properties --
2.2. Van Der Waals Interactions --
2.2.1. Close Packing --
2.3. Hydrogen Bonds --
2.3.1. Weak Hydrogen Bonds --
2.3.2. Hierarchies of Hydrogen Bonds --
2.4. Halogen Bonds --
2.5. Other Interactions --
2.6. Methods of Study of Interactions --
2.6.1. Crystallography --
2.6.2. Crystallographic Databases --
2.6.2.1. Graph Sets --
2.6.3. Spectroscopy --
2.6.4.Computational Methods --
2.6.4.1. Crystal Structure Prediction --
2.7. Analysis of Typical Crystal Structures --
3. Crystal Design Strategies --
3.1. Synthesis in Chemistry --
3.2. Supramolecular Chemistry --
3.3. The Synthon in Crystal Engineering --
3.3.1. Some Representative Synthons --
3.3.2. The Carboxyl Dimer Synthon --
3.3.3. Structural Insulation in Crystal Engineering --
3.3.4. Discovery of New Synthons --
3.3.5. Two-dimensional Patterns --
3.3.6. Higher Dimensional Control --
3.3.7. Coordination Polymers as Networks --
3.3.8. Useful Synthons. 4. Crystallization and Crystal Growth --
4.1. Crystallization of Organic Solids --
4.1.1. Solution Crystallization --
4.1.1.1. Antisolvent Crystallization --
4.1.2. Melt Crystallization --
4.1.3. Sublimation --
4.1.4. Hydrothermal and Solvothermal Crystallization --
4.1.5. Crystallization from a Solid Phase --
4.1.5.1. Single Crystal to Single Crystal (SCSC) Transformations --
4.1.5.2. Mechanochemistry --
4.1.6. Crystallization of Chiral Solids --
4.2. Nucleation --
4.2.1. Nucleation as Distinct from Crystal Growth --
4.3. Thermodynamics and Kinetics of Crystallization --
4.4. Crystal Growth --
4.4.1. The Terrace-Ledge-Kink Model of Crystal Growth --
4.4.2. Two-dimensional Nucleation versus Growth at Dislocations --
4.4.3. Ostwald Ripening --
4.5. Crystal Morphology and Habit --
4.5.1. Crystal Morphology and Crystal Symmetry --
4.6. Crystal Morphology Engineering --
4.6.1. Tailor-made Inhibitors --
4.7. Why is it that all Compounds don't seem to Crystallize Equally Well or Equally Quickly? --
5. Polymorphism --
5.1. What is Polymorphism? --
5.1.1. Polymorphism and the Pharmaceutical Industry --
5.1.2. Some Simple Definitions --
5.2. Occurrence of Polymorphism --
5.2.1. Polymorphism and Intermolecular Interactions --
5.3. Thermodynamics of Polymorphism --
5.3.1. Free Energy Diagrams and Stability of Polymorphs --
5.3.2. Monotropes and Enantiotropes --
5.3.2.1. Burger-Ramberger Rules --
5.3.2.2. Distinguishing between Enantiotropes and Monotropes --
5.4. Thermodynamics versus Kinetics and the Fonnation of Polymorphs --
5.5. Methods of Polymorph Characterization --
5.5.1. Hot Stage Microscopy --
5.5.2.X-ray Diffraction --
5.5.3. Thermal Analysis --
5.6. Properties of Polymorphs --
5.6.1. Color [Colour] --
5.6.2. Mechanical Properties --
5.6.3. Chemical Reactivity --
5.6.3.1. Polymorphism in Energetic Materials --
5.6.3.2. Polymorphism and Reactivity of Drugs --
5.7. Case Studies from the Pharmaceutical Industry --
5.7.1. Ranitidine --
5.7.2. Ritonavir --
5.7.3. Aspirin --
5.7.4. Omeprazole --
5.8. Polymorphism Today --
6. Multi-component Crystals --
6.1. General Classification and Nomenclature --
6.2. Solid Solutions --
6.3. Host-Guest Compounds --
6.3.1. Design of Hosts --
6.4. Solvates and Hydrates --
6.5. Donor-Acceptor Complexes --
6.6. Co-crystals --
6.6.1. Hydrogen Bonded Co-crystals --
6.6.2. Pharmaceutical Co-crystals --
6.6.2.1. Design of Pharmaceutical Co-crystals --
6.6.2.2. Properties of Pharmaceutical Co-crystals --
6.6.2.3. Co-crystals and Salts. 7. Coordination Polymers --
7.1. What are Coordination Polymers? --
7.2. Classification Schemes --
7.3. Crystal Design Strategies --
7.4.Network Topologies --
7.4.1.Net Symbols and Nomenclature --
7.4.2. Topologies of Three-dimensional Structures --
7.4.2.1. Diamond Topology --
7.4.2.2. NaCl Topology --
7.4.2.3. NbO and CdSO4 Topologies --
7.4.2.4. PtS and Related Topologies --
7.5. Supramolecular Isomerism --
7.6. Interpenetration --
7.7. Porous Coordination Polymers --
7.7.1. Pore Size --
7.7.2. Gas Sorption and Storage --
7.8. Properties and Applications --
7.8.1. Magnetism, Magnetic Ordering and Spin Crossover --
7.8.2. Luminescence and Sensing --
7.8.3. Nonlinear Optical Properties --
7.8.4. Proton Conductivity --
7.8.5. Ferroelectricity --
7.8.6. Birefringence --
7.8.7. Negative Thermal Expansion --
7.8.8. Processability --
7.8.9. Chemical Reactivity --
7.8.9.1. Structural Transformations on Heating --
7.8.9.2.[2+2] Cycloaddition Reactions --
7.8.9.3. Structural Transformations due to Loss of Solvents --
7.8.9.4. Reactivity of Supramolecular Isomers --
7.9. Building Approach: Influence of Experimental Conditions.
Responsibility: Gautam R. Desiraju, Jagadese J Vittal, Arunachalam Ramanan.

Abstract:

Deals with the subject of crystal engineering. This book consists major areas of the subject, including organic crystals and co-ordination polymers.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (1)

View most popular tags as: tag list | tag cloud

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/739831025>
library:oclcnum"739831025"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/739831025>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:copyrightYear"2011"
schema:creator
schema:datePublished"2011"
schema:description"1. Crystal Engineering -- 1.1.X-ray Crystallography -- 1.2.Organic Solid State Chemistry -- 1.3. The Crystal as a Supramolecular Entity -- 1.4. Modern Crystal Engineering -- 1.4.1. Horizontal and Vertical Divisions of Chemistry -- 1.4.2.Organic Crystal Engineering -- 1.4.3. Metal-Organic Crystal Engineering -- 1.4.4. Properties of Crystals -- 2. Intermolecular Interactions -- 2.1. General Properties -- 2.2. Van Der Waals Interactions -- 2.2.1. Close Packing -- 2.3. Hydrogen Bonds -- 2.3.1. Weak Hydrogen Bonds -- 2.3.2. Hierarchies of Hydrogen Bonds -- 2.4. Halogen Bonds -- 2.5. Other Interactions -- 2.6. Methods of Study of Interactions -- 2.6.1. Crystallography -- 2.6.2. Crystallographic Databases -- 2.6.2.1. Graph Sets -- 2.6.3. Spectroscopy -- 2.6.4.Computational Methods -- 2.6.4.1. Crystal Structure Prediction -- 2.7. Analysis of Typical Crystal Structures -- 3. Crystal Design Strategies -- 3.1. Synthesis in Chemistry -- 3.2. Supramolecular Chemistry -- 3.3. The Synthon in Crystal Engineering -- 3.3.1. Some Representative Synthons -- 3.3.2. The Carboxyl Dimer Synthon -- 3.3.3. Structural Insulation in Crystal Engineering -- 3.3.4. Discovery of New Synthons -- 3.3.5. Two-dimensional Patterns -- 3.3.6. Higher Dimensional Control -- 3.3.7. Coordination Polymers as Networks -- 3.3.8. Useful Synthons."@en
schema:description"4. Crystallization and Crystal Growth -- 4.1. Crystallization of Organic Solids -- 4.1.1. Solution Crystallization -- 4.1.1.1. Antisolvent Crystallization -- 4.1.2. Melt Crystallization -- 4.1.3. Sublimation -- 4.1.4. Hydrothermal and Solvothermal Crystallization -- 4.1.5. Crystallization from a Solid Phase -- 4.1.5.1. Single Crystal to Single Crystal (SCSC) Transformations -- 4.1.5.2. Mechanochemistry -- 4.1.6. Crystallization of Chiral Solids -- 4.2. Nucleation -- 4.2.1. Nucleation as Distinct from Crystal Growth -- 4.3. Thermodynamics and Kinetics of Crystallization -- 4.4. Crystal Growth -- 4.4.1. The Terrace-Ledge-Kink Model of Crystal Growth -- 4.4.2. Two-dimensional Nucleation versus Growth at Dislocations -- 4.4.3. Ostwald Ripening -- 4.5. Crystal Morphology and Habit -- 4.5.1. Crystal Morphology and Crystal Symmetry -- 4.6. Crystal Morphology Engineering -- 4.6.1. Tailor-made Inhibitors -- 4.7. Why is it that all Compounds don't seem to Crystallize Equally Well or Equally Quickly? -- 5. Polymorphism -- 5.1. What is Polymorphism? -- 5.1.1. Polymorphism and the Pharmaceutical Industry -- 5.1.2. Some Simple Definitions -- 5.2. Occurrence of Polymorphism -- 5.2.1. Polymorphism and Intermolecular Interactions -- 5.3. Thermodynamics of Polymorphism -- 5.3.1. Free Energy Diagrams and Stability of Polymorphs -- 5.3.2. Monotropes and Enantiotropes -- 5.3.2.1. Burger-Ramberger Rules -- 5.3.2.2. Distinguishing between Enantiotropes and Monotropes -- 5.4. Thermodynamics versus Kinetics and the Fonnation of Polymorphs -- 5.5. Methods of Polymorph Characterization -- 5.5.1. Hot Stage Microscopy -- 5.5.2.X-ray Diffraction -- 5.5.3. Thermal Analysis -- 5.6. Properties of Polymorphs -- 5.6.1. Color [Colour] -- 5.6.2. Mechanical Properties -- 5.6.3. Chemical Reactivity -- 5.6.3.1. Polymorphism in Energetic Materials -- 5.6.3.2. Polymorphism and Reactivity of Drugs -- 5.7. Case Studies from the Pharmaceutical Industry -- 5.7.1. Ranitidine -- 5.7.2. Ritonavir -- 5.7.3. Aspirin -- 5.7.4. Omeprazole -- 5.8. Polymorphism Today -- 6. Multi-component Crystals -- 6.1. General Classification and Nomenclature -- 6.2. Solid Solutions -- 6.3. Host-Guest Compounds -- 6.3.1. Design of Hosts -- 6.4. Solvates and Hydrates -- 6.5. Donor-Acceptor Complexes -- 6.6. Co-crystals -- 6.6.1. Hydrogen Bonded Co-crystals -- 6.6.2. Pharmaceutical Co-crystals -- 6.6.2.1. Design of Pharmaceutical Co-crystals -- 6.6.2.2. Properties of Pharmaceutical Co-crystals -- 6.6.2.3. Co-crystals and Salts."@en
schema:description"The writing style is simple, with an adequate number of exercises and problems, and the diagrams are easy to understand. This book consists major areas of the subject, including organic crystals and co-ordination polymers, and can easily form the basis of a 30 to 40 lecture course for senior undergraduates."--Pub. desc."@en
schema:description""This book is important because it is the first textbook in an area that has become very popular in recent times. There are around 250 research groups in crystal engineering worldwide today. The subject has been researched for around 40 years but there is still no textbook at the level of senior undergraduates and beginning PhD students. This book is expected to fill this gap."@en
schema:description"7. Coordination Polymers -- 7.1. What are Coordination Polymers? -- 7.2. Classification Schemes -- 7.3. Crystal Design Strategies -- 7.4.Network Topologies -- 7.4.1.Net Symbols and Nomenclature -- 7.4.2. Topologies of Three-dimensional Structures -- 7.4.2.1. Diamond Topology -- 7.4.2.2. NaCl Topology -- 7.4.2.3. NbO and CdSO4 Topologies -- 7.4.2.4. PtS and Related Topologies -- 7.5. Supramolecular Isomerism -- 7.6. Interpenetration -- 7.7. Porous Coordination Polymers -- 7.7.1. Pore Size -- 7.7.2. Gas Sorption and Storage -- 7.8. Properties and Applications -- 7.8.1. Magnetism, Magnetic Ordering and Spin Crossover -- 7.8.2. Luminescence and Sensing -- 7.8.3. Nonlinear Optical Properties -- 7.8.4. Proton Conductivity -- 7.8.5. Ferroelectricity -- 7.8.6. Birefringence -- 7.8.7. Negative Thermal Expansion -- 7.8.8. Processability -- 7.8.9. Chemical Reactivity -- 7.8.9.1. Structural Transformations on Heating -- 7.8.9.2.[2+2] Cycloaddition Reactions -- 7.8.9.3. Structural Transformations due to Loss of Solvents -- 7.8.9.4. Reactivity of Supramolecular Isomers -- 7.9. Building Approach: Influence of Experimental Conditions."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/923716651>
schema:genre"Textbooks."@en
schema:genre"Textbooks"@en
schema:inLanguage"en"
schema:name"Crystal engineering : a textbook"@en
schema:publisher
schema:publisher
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.