skip to content
Data mining : concepts, models, methods and algorithms Preview this item
ClosePreview this item
Checking...

Data mining : concepts, models, methods and algorithms

Author: Mehmed Kantardzic
Publisher: New York ; Chichester : Wiley, 2002.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Summary:

Provides a comprehensive introduction to the field of data mining. This book discusses data mining principles and then describes representative methods and algorithms originating from different  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Mehmed Kantardzic
ISBN: 0471228524 9780471228523
OCLC Number: 50055336
Description: 300 p.
Contents: PREFACE.1 Data Mining Concepts.1.1 Introduction.1.2 Data-mining roots.1.3 Data-mining process.1.4 Large data sets.1.5 Data warehouses.1.6 Organization of this book.1.7 Review questions and problems.1.8 References for further study.2 Preparing the Data.2.1 Representation of raw data.2.2 Characteristics of raw data.2.3 Transformation of raw data.2.4 Missing data.2.5 Time-dependent data.2.6 Outlier analysis.2.7 Review questions and problems.2.8 References for further study.3 Data Reduction.3.1 Dimensions of large data sets.3.2 Features reduction.3.3 Entropy measure for ranking features.3.4 Principal component analysis.3.5 Values reduction.3.6 Feature discretization: ChiMerge technique.3.7 Cases reduction.3.8 Review questions and problems.3.9 References for further study.4 Learning from Data.4.1 Learning machine.4.2 Statistical learning theory.4.3 Types of learning methods.4.4 Common learning tasks.4.5 Model estimation.4.6 Review questions and problems.4.7 References for further study.5 Statistical Methods.5.1 Statistical inference.5.2 Assessing differences in data sets.5.3 Bayesian inference.5.4 Predictive regression.5.5 Analysis of variance.5.6 Logistic regression.5.7 Log-linear models.5.8 Linear discriminant analysis.5.9 Review questions and problems.5.10 References for further study.6 Cluster Analysis.6.1 Clustering concepts.6.2 Similarity measures.6.3 Agglomerative hierarchical clustering.6.4 Partitional clustering.6.5 Incremental clustering.6.6 Review questions and problems.6.7 References for further study.7 Decision Trees and Decision Rules.7.1 Decision trees.7.2 C4.5 Algorithm: generating a decision tree.7.3 Unknown attribute values.7.4 Pruning decision tree.7.5 C4.5 Algorithm: generating decision rules.7.6 Limitations of decision trees and decision rules.7.7 Associative-classification method.7.8 Review questions and problems.7.9 References for further study.8 Association Rules.8.1 Market-Basket Analysis.8.2 Algorithm Apriori.8.3 From frequent itemsets to association rules.8.4 Improving the efficiency of the Apriori algorithm.8.5 Frequent pattern-growth method.8.6 Multidimensional association-rules mining.8.7 Web mining.8.8 HITS and LOGSOM algorithms.8.9 Mining path-traversal patterns.8.10 Text mining.8.11 Review questions and problems.8.12 References for further study.9 Artificial Neural Networks.9.1 Model of an artificial neuron.9.2 Architectures of artificial neural networks.9.3 Learning process.9.4 Learning tasks.9.5 Multilayer perceptrons.9.6 Competitive networks and competitive learning.9.7 Review questions and problems.9.8 References for further study.10 Genetic Algorithms.10.1 Fundamentals of genetic algorithms.10.2 Optimization using genetic algorithms.10.3 A simple illustration of a genetic algorithm.10.4 Schemata.10.5 Traveling salesman problem.10.6 Machine learning using genetic algorithms.10.7 Review questions and problems.10.8 References for further study.11 Fuzzy Sets and Fuzzy Logic.11.1 Fuzzy sets.11.2 Fuzzy set operations.11.3 Extension principle and fuzzy relations.11.4 Fuzzy logic and fuzzy inference systems.11.5 Multifactorial evaluation.11.6 Extracting fuzzy models from data.11.7 Review questions and problems.11.8 References for further study.12 Visualization Methods.12.1 Perception and visualization.12.2 Scientific visualization and information visualization.12.3 Parallel coordinates.12.4 Radial visualization.12.5 Kohonen self-organized maps.12.6 Visualization systems for data mining.12.7 Review questions and problems.12.8 References for further study.13 References.APPENDIX A: Data-Mining Tools.Al Commercially and publicly available tools.A2 Web site links.APPENDIX B: Data-Mining Applications.Bl Data mining for financial data analysis.B2 Data mining for the telecommunications industry.B3 Data mining for the retail industry.B4 Data mining in healthcare and biomedical research.B5 Data mining in science and engineering.B6 Pitfalls of data mining.INDEX.ABOUT THE AUTHOR.
Responsibility: Mehmed Kantardzic.

Reviews

Editorial reviews

Publisher Synopsis

"...a very readable and up-to-date introduction to data mining..." (Quality & Reliability Engineering International, Vol. 21 (4) June 2005) "...suitable for a graduate level course in data mining...I Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/50055336>
library:oclcnum"50055336"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/50055336>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2002"
schema:exampleOfWork<http://worldcat.org/entity/work/id/796712406>
schema:inLanguage"en"
schema:name"Data mining : concepts, models, methods and algorithms"@en
schema:numberOfPages"300"
schema:publisher
schema:url
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.