skip to content
Deep learning with Azure : building and deploying artificial intelligence solutions on the Microsoft AI platform Preview this item
ClosePreview this item
Checking...

Deep learning with Azure : building and deploying artificial intelligence solutions on the Microsoft AI platform

Author: Mathew Salvaris; Danielle Dean; Wee-Hyong Tok
Publisher: New York : Apress, 2018.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer.Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: (OCoLC)1030899934
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Mathew Salvaris; Danielle Dean; Wee-Hyong Tok
ISBN: 9781484236796 1484236793
OCLC Number: 1050110381
Description: 1 online resource.
Contents: Intro; Table of Contents; About the Authors; About the Guest Authors of Chapter 7; About the Technical Reviewers; Acknowledgments; Foreword; Introduction; Part I: Getting Started with AI; Chapter 2: Overview of Deep Learning; Common Network Structures; Convolutional Neural Networks; Recurrent Neural Networks; Generative Adversarial Networks; Autoencoders; Deep Learning Workflow; Finding Relevant Data Set(s); Data Set Preprocessing; Training the Model; Validating and Tuning the Model; Deploy the Model; Deep Learning Frameworks & Compute Jump Start Deep Learning: Transfer Learning and Domain AdaptationModels Library; Summary; Chapter 3: Trends in Deep Learning; Variations on Network Architectures; Residual Networks and Variants; DenseNet; Small Models, Fewer Parameters; Capsule Networks; Object Detection; Object Segmentation; More Sophisticated Networks; Automated Machine Learning; Hardware; More Specialized Hardware; Hardware on Azure; Quantum Computing; Limitations of Deep Learning; Be Wary of Hype; Limits on Ability to Generalize; Data Hungry Models, Especially Labels; Reproducible Research and Underlying Theory Looking Ahead: What Can We Expect from Deep Learning?Ethics and Regulations; Summary; Chapter 1: Introduction to Artificial Intelligence; Microsoft and AI; Machine Learning; Deep Learning; Rise of Deep Learning; Applications of Deep Learning; Summary; Part II: Azure AI Platform and Experimentation Tools; Chapter 4: Microsoft AI Platform; Services; Prebuilt AI: Cognitive Services; Conversational AI: Bot Framework; Custom AI: Azure Machine Learning Services; Custom AI: Batch AI; Infrastructure; Data Science Virtual Machine; Spark; Container Hosting; Data Storage; Tools Azure Machine Learning StudioIntegrated Development Environments; Deep Learning Frameworks; Broader Azure Platform; Getting Started with the Deep Learning Virtual Machine; Running the Notebook Server; Summary; Chapter 5: Cognitive Services and Custom Vision; Prebuilt AI: Why and How?; Cognitive Services; What Types of Cognitive Services Are Available?; Computer Vision APIs; How to Use Optical Character Recognition-; How to Recognize Celebrities and Landmarks; How Do I Get Started with Cognitive Services?; Custom Vision; Hello World! for Custom Vision; Exporting Custom Vision Models; Summary Part III: AI Networks in PracticeChapter 6: Convolutional Neural Networks; The Convolution in Convolution Neural Networks; Convolution Layer; Pooling Layer; Activation Functions; Sigmoid; Tanh; Rectified Linear Unit; CNN Architecture; Training Classification CNN; Why CNNs; Training CNN on CIFAR10; Training a Deep CNN on GPU; Model 1; Model 2; Model 3; Model 4; Transfer Learning; Summary; Chapter 7: Recurrent Neural Networks; RNN Architectures; Training RNNs; Gated RNNs; Sequence-to-Sequence Models and Attention Mechanism; RNN Examples; Example 1: Sentiment Analysis
Responsibility: Mathew Salvaris, Danielle Dean, Wee Hyong Tok.

Abstract:

Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer.Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI.What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1050110381> # Deep learning with Azure : building and deploying artificial intelligence solutions on the Microsoft AI platform
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "1050110381" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'https://img1.od-cdn.com/ImageType-100/7614-1/{E892926D-68E7-487B-913C-4ADC80A9D666}Img100.jpg'" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_reference> ; # COMPUTERS / Reference
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_hardware_general> ; # COMPUTERS / Hardware / General
    schema:about <http://dewey.info/class/004.6782/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_computer_science> ; # COMPUTERS / Computer Science
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_computer_literacy> ; # COMPUTERS / Computer Literacy
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/microsoft_azure_computing_platform> ; # Microsoft Azure (Computing platform)
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computing_methodologies> ; # Computing Methodologies
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/microsoft_and_net> ; # Microsoft and .NET
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_machine_theory> ; # COMPUTERS / Machine Theory
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_data_processing> ; # COMPUTERS / Data Processing
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/microsoft_programming> ; # Microsoft programming
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/program_concepts_learning_to_program> ; # Program concepts / learning to program
    schema:about <http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_information_technology> ; # COMPUTERS / Information Technology
    schema:author <http://experiment.worldcat.org/entity/work/data/5402290189#Person/salvaris_mathew> ; # Mathew Salvaris
    schema:author <http://experiment.worldcat.org/entity/work/data/5402290189#Person/tok_wee_hyong> ; # Wee-Hyong Tok
    schema:author <http://experiment.worldcat.org/entity/work/data/5402290189#Person/dean_danielle> ; # Danielle Dean
    schema:bookFormat schema:EBook ;
    schema:datePublished "2018" ;
    schema:description "Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer.Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI.What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful."@en ;
    schema:description "Intro; Table of Contents; About the Authors; About the Guest Authors of Chapter 7; About the Technical Reviewers; Acknowledgments; Foreword; Introduction; Part I: Getting Started with AI; Chapter 2: Overview of Deep Learning; Common Network Structures; Convolutional Neural Networks; Recurrent Neural Networks; Generative Adversarial Networks; Autoencoders; Deep Learning Workflow; Finding Relevant Data Set(s); Data Set Preprocessing; Training the Model; Validating and Tuning the Model; Deploy the Model; Deep Learning Frameworks & Compute"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5402290189> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1030899934> ;
    schema:name "Deep learning with Azure : building and deploying artificial intelligence solutions on the Microsoft AI platform"@en ;
    schema:productID "1050110381" ;
    schema:url <http://link.springer.com/10.1007/978-1-4842-3679-6> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1878850> ;
    schema:url <https://samples.overdrive.com/?crid=e892926d-68e7-487b-913c-4adc80a9d666&.epub-sample.overdrive.com> ;
    schema:url "https://img1.od-cdn.com/ImageType-100/7614-1/{E892926D-68E7-487B-913C-4ADC80A9D666}Img100.jpg" ;
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=5497902> ;
    schema:url <https://nls.ldls.org.uk/welcome.html?ark:/81055/vdc_100065501111.0x000001> ;
    schema:url <https://www.overdrive.com/search?q=E892926D-68E7-487B-913C-4ADC80A9D666> ;
    schema:url <http://dx.doi.org/10.1007/978-1-4842-3679-6> ;
    schema:url <http://ezaccess.libraries.psu.edu/login?url=https://doi.org/10.1007/978-1-4842-3679-6> ;
    schema:url <http://ezproxy.lindenwood.edu:2048/login?url=https://www.safaribooksonline.com/library/view/-/9781484236796/?ar> ;
    schema:url <http://proquest.safaribooksonline.com/?fpi=9781484236796> ;
    schema:url <http://proquest.safaribooksonline.com/?uiCode=stanford&xmlId=9781484236796> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4842-3679-6> ;
    schema:workExample <http://worldcat.org/isbn/9781484236796> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1050110381> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5402290189#Person/dean_danielle> # Danielle Dean
    a schema:Person ;
    schema:familyName "Dean" ;
    schema:givenName "Danielle" ;
    schema:name "Danielle Dean" ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Person/salvaris_mathew> # Mathew Salvaris
    a schema:Person ;
    schema:familyName "Salvaris" ;
    schema:givenName "Mathew" ;
    schema:name "Mathew Salvaris" ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Person/tok_wee_hyong> # Wee-Hyong Tok
    a schema:Person ;
    schema:familyName "Tok" ;
    schema:givenName "Wee-Hyong" ;
    schema:name "Wee-Hyong Tok" ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_computer_literacy> # COMPUTERS / Computer Literacy
    a schema:Intangible ;
    schema:name "COMPUTERS / Computer Literacy"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_computer_science> # COMPUTERS / Computer Science
    a schema:Intangible ;
    schema:name "COMPUTERS / Computer Science"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_data_processing> # COMPUTERS / Data Processing
    a schema:Intangible ;
    schema:name "COMPUTERS / Data Processing"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_hardware_general> # COMPUTERS / Hardware / General
    a schema:Intangible ;
    schema:name "COMPUTERS / Hardware / General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_information_technology> # COMPUTERS / Information Technology
    a schema:Intangible ;
    schema:name "COMPUTERS / Information Technology"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_machine_theory> # COMPUTERS / Machine Theory
    a schema:Intangible ;
    schema:name "COMPUTERS / Machine Theory"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computers_reference> # COMPUTERS / Reference
    a schema:Intangible ;
    schema:name "COMPUTERS / Reference"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/computing_methodologies> # Computing Methodologies
    a schema:Intangible ;
    schema:name "Computing Methodologies"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/microsoft_and_net> # Microsoft and .NET
    a schema:Intangible ;
    schema:name "Microsoft and .NET"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/microsoft_azure_computing_platform> # Microsoft Azure (Computing platform)
    a schema:Intangible ;
    schema:name "Microsoft Azure (Computing platform)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/microsoft_programming> # Microsoft programming
    a schema:Intangible ;
    schema:name "Microsoft programming"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5402290189#Topic/program_concepts_learning_to_program> # Program concepts / learning to program
    a schema:Intangible ;
    schema:name "Program concepts / learning to program"@en ;
    .

<http://link.springer.com/10.1007/978-1-4842-3679-6>
    rdfs:comment "from Springer" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://proquest.safaribooksonline.com/?uiCode=stanford&xmlId=9781484236796>
    rdfs:comment "Available to Stanford-affiliated users." ;
    .

<http://worldcat.org/isbn/9781484236796>
    a schema:ProductModel ;
    schema:isbn "1484236793" ;
    schema:isbn "9781484236796" ;
    .

<http://www.worldcat.org/oclc/1030899934>
    a schema:CreativeWork ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1050110381> ; # Deep learning with Azure : building and deploying artificial intelligence solutions on the Microsoft AI platform
    .

<http://www.worldcat.org/title/-/oclc/1050110381>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1050110381> ; # Deep learning with Azure : building and deploying artificial intelligence solutions on the Microsoft AI platform
    schema:dateModified "2018-10-17" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.